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Abstract

During the past couple of years much research effort has been devoted to ex-
plaining the spread of corporate bonds over Treasuries. On the other hand, rela-
tively little is known about the spread components of structured credit products.
This paper shows that such securities compensate investors for expected losses
due to defaults, pure jump-to-default risk, correlation risk, as well as the risk of
firm-specific and market-wide adverse changes in credit conditions. We provide
a framework that allows a decomposition of ”structured” credit spreads, and we
apply this decomposition to CDX index tranches.
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1 Introduction

We focus on the investment-grade CDX family of structured credit products, for their
entire trading history up to November 2006. These products allocate default losses on a
portfolio of US corporate debt of 125 firms, equally weighted, to a list of tranches. The
first-loss, or “equity” tranche, for example, is allocated default losses as they occur, up to
the 3% of the total notional amount of the 125-name portfolio. The other tranches cover
losses, respectively between 3 and 7% of notional (”junior mezzanine”), between 7 and
10% of notional (”mezzanine”), between 10 and 15% of notional (“senior mezzanine”),
between 15 and 30% of notional (”senior”), and between 30 and 100% of the notional
(“super senior”).

We find that investors in the CDX first-loss tranche on average bear about 93.3%
of the expected losses on the underlying portfolio of corporate debt, and receive about
77.0% of the total compensation for bearing portfolio losses. On the other hand, in-
vestors in the senior tranche, on average, bear about 0.2% of expected default losses on
the underlying portfolio, and receive about 2% of the total compensation. In terms of
the ratio, on average, of compensation rate per unit of expected loss, the first-loss piece
carries a risk premium of 3.9, whereas the most senior tranches offer a risk premium of
about 50. This extreme difference in risk premia is natural given that the most senior
tranches bear losses only when there is a significant ”meltdown” in corporate perfor-
mance. As opposed to the finding of Coval, Jurek, and Stafford (2007) that investors do
not demand much compensation for this extremely systematic risk, there does seem to
be evidence of significant compensation for the systematic nature of this risk.

Using the methods developed in this paper, we are able to break down the com-
pensation for bearing default risk into several components: compensation for actual
expected losses, systematic risk, firm-specific risk, correlation risk, and pure jump-to-
default (JTD) risk.1 The various tranches have different rates of compensation per unit
of expected loss because they carry these various types of risks in different proportions to
each other. For example, the equity tranche is allocated 81.7% of the total compensation
for firm-specific risk in the underlying portfolio of debt, but carries only 32.0% of the
total compensation for systematic risk. The senior tranche, on the other hand, is allo-
cated only 0.2% of the total compensation for firm-specific risk, but carries a relatively
large fraction, 9.9%, of the total compensation for systematic risk.

For the 5-year CDX.NA.IG index on November 1, 2006, Figure 1 shows for each
tranche the fraction of its compensation that can be attributed to each of the five risk

1The latter component is sometimes called timing risk, or portfolio sampling risk. Compensation
for correlation risk premium and pure jump-to-default risk would not be separately identifiable in a
univariate setting. Hence, in recent research on the components of corporate bond and CDS spreads,
the sum of these two risk premia is simply called the jump-to-default risk premium. See for example
Driessen (2005), Berndt, Douglas, Duffie, Ferguson, and Schranz (2005), Amato (2005), Amato and
Remolona (2005), and Saita (2006).
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Figure 1: Fractions of index and tranche spreads that are compensation for various sources of risk.

Data are for the 5-year CDX North-America Investment-Grade index on November 1, 2006. A precise

definition of the risk premia is given in Section 6.2, while Section 7.3 provides intuitive explanations.

sources mentioned above. We see that the equity tranche mostly compensates investors
for expected losses, pure jump-to-default risk, and the risk of firm-specific changes in
credit-worthiness. On the other hand, senior tranches almost exclusively compensate
investors for correlation and systematic risk. Such a decomposition of ”structured” credit
spreads could be applied to a wide range of multi-name credit derivatives, like Nth–to-
default baskets, interest- and principal-only tranches, and various types of collateralized
debt obligations (CDOs).

In order to estimate a time-series model of tranche pricing that incorporates time
variation in conditional default probabilities and time variation in risks and risk premia
of the above-mentioned types, we have extended prior work by Duffie and Gârleanu
(2001) and Mortensen (2006), that is based on correlated firm-by-firm stochastic inten-
sities of default.2 In order to fit the model tractably, we have developed computational
techniques, outlined in Eckner (2009), that permits tranche pricing at roughly the same
computational speed as for the copula model (Li (2000)), the standard in financial-
industry pricing models.

2Standard references on intensity-based models, also called reduced-from models, are Jarrow and
Turnbull (1995), Lando (1998), and Duffie and Singleton (1999).
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The remainder of this section discusses applications for our work and related lit-
erature. We also describe the most common credit derivative contracts, and the data
sources used for our analysis. Section 2 presents descriptive statistics of the historical
price behavior of some credit derivatives. Section 3 introduces the model for default
times and describes the pricing of credit derivatives in this framework. Section 5 ex-
amines the model fit to the time series of credit tranche spreads. Section 6 introduces
a joint model for physical and risk-neutral default intensities, while Section 7 presents
the fitted model and a decomposition of credit tranche spreads and portfolio default
compensation. Section 8 concludes.

1.1 Applications

A better understanding of what drives changes in the price of credit risky securities
should be of interest to a variety of researchers and practitioners. Asset pricing re-
searchers typically try to link the sensitivity of security prices to certain state variables.
The findings in this paper indicate that for some credit derivative contracts, changes in
risk premia over time might play a more important role than has traditionally been as-
signed to them, especially for senior tranche spreads, which heavily depend on perceived
tail risk. See also Collin-Dufresne, Goldstein, and Martin (2001), who find that various
proposed proxies for changes in default probabilities and recovery rates can explain only
about 25 percent of observed credit spread changes.

Investors in single-name and structured credit products would like to better under-
stand the types of risks to which they are exposed to, and to quantify the extent to which
they are being compensated for these risks. The decomposition of credit tranche spreads
in this paper indicates how a linear combination of credit tranches might allow to isolate
the exposure to a certain type of risk, for example pure jump-to-default risk, which in the
past has carried a rather large risk premium.3 Coval, Jurek, and Stafford (2007) argue
that investors in senior CDO tranches underprice systematic risks by solely relying on
credit ratings for the purpose of making investment decisions. We find that, at least for
corporate credits, investors are reasonably aware, in terms of compensation demanded
above and beyond expected losses, about the differences in the risks between structured
and single-name credit products, although in our framework we cannot preclude that
investors are at least partially oblivious about these differences.

Finally, a better understanding of structured credit products should be of interest to
dealers in these securities, since it would allow them to better hedge and quantify their
inventory risk. When order flow becomes imbalanced, as in May 2005 and July/August

3The large size of this risk premium has led to the term ”credit spread puzzle”, see for example
Driessen (2005), Berndt, Douglas, Duffie, Ferguson, and Schranz (2005), Chen, Collin-Dufresne, and
Goldstein (2006) and Saita (2006). In our framework, the pure JTD risk premium accounts for roughly
two thirds of the total JTD risk premium, so that the puzzle is somewhat reduced, but remains intact
for highly rated issuers.
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2007, it is important for liquidity providers to assess whether this imbalance is caused
by informed or uniformed traders, so that they can quote more competitive spreads and
support an orderly working of the credit markets.

1.2 Related Literature

There exists a vast literature on corporate default risk, initiated by Altman (1968).
However, due to computational challenges, most research on the dynamics of physical
(or real-world) default intensities (in the following denoted by λP

i ) is still quite recent.
Duffie, Saita, and Wang (2007) model a firm’s default intensity as dependent on a set
of firm-specific and macroeconomic covariates, of which distance-to-default, which is a
volatility-adjusted measure of leverage, has the most influence. They estimate the time-
series dynamics of all covariates and therefore arrive at a fully dynamic model for a firm’s
default intensity and default time. Duffie, Eckner, Horel, and Saita (2009) extend this
model by including a dynamic frailty variable, a time-varying latent factor that affects
the default risk of all companies. They find that such a latent factor is important for
explaining the tendency of corporate defaults to cluster over time, as in 1989-1990 and
2001-2002, and for obtaining a realistic level of default correlation in intensity-based
models.

The recent emergence of a wide array of single-name and structured credit products
has made available a tremendous amount of information about investors’ risk preferences
in the credit markets.4 Modeling the dynamics of risk-neutral default intensities (in the
following denoted by λQ

i ) therefore is currently an extremely active research area. See for
example Duffie and Gârleanu (2001), Giesecke and Goldberg (2005), Errais, Giesecke,
and Goldberg (2006), Joshi and Stacey (2006), Longstaff and Rajan (2008), Mortensen
(2006), Papageorgiou and Sircar (2007), and Eckner (2009). Schneider, Sögner, and Veža
(2007) and Feldhütter (2007) examine both the risk-neutral and ”physical” dynamics of
λQ

i .
Nevertheless, a joint framework for the multivariate dynamics of physical and risk-

neutral default intensities is still limited. Recent research in this area includes Berndt,
Douglas, Duffie, Ferguson, and Schranz (2005), Amato (2005), Amato and Remolona
(2005), and Saita (2006). Our paper continues this line of work by incorporating CDX
tranche spread data into the analysis, which allows us to better pin down the multivariate
dynamics of risk-neutral default intensities and to quantify certain risk premia that are
unique to a multivariate setting.

4Although corporate bond spreads also contain at least the single-name information, they tend to
reflect tax and liquidity effects, see Elton, Gruber, Agrawal, and Mann (2001), Driessen (2005), and
Longstaff, Mithal, and Neis (2005). On the other hand, credit default swap spreads are usually regarded
as a quite pure measure of perceived default risk. They allow to short credit risk much more easily and
cheaper than using corporate bonds, and have standardized maturity dates and credit event triggers,
which enhances their liquidity.
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1.3 Credit Derivative Contracts

A credit derivative is a contract whose payoff is linked to the creditworthiness of one or
more obligations. This section summarizes the features of the three most common types
for corporate credit risk.

Credit Default Swaps. By far the most common credit derivative is the credit
default swap (CDS). It is an agreement between a protection buyer and a protection
seller, whereby the buyer pays a periodic fee in return for a contingent payment by the
seller upon a credit event, such as bankruptcy or “failure to pay”, of a reference entity.
The contingent payment usually replicates the loss incurred by a creditor of the reference
entity in the event of its default. See, for example, Duffie (1999).

Credit Indices. A credit index contract allows an investor to either buy or sell
protection on a basket of reference entities, and therefore closely resembles a portfo-
lio of CDS contracts. For example, the CDX.NA.IG (for CDS index, North America,
Investment Grade) contract provides equally-weighted default protection on 125 North
American investment-grade rated issuers. For a more detailed description see the ’Credit
Derivatives Handbook’ (2006) by Merrill Lynch.

Credit Tranches. A credit tranche allows an investor to gain a specified exposure
to the credit risk of the underlying portfolio, while in return receiving periodic coupon
payments. Losses due to credit events in the underlying portfolio are allocated first to
the lowest tranche, known as the equity tranche, and then to successively prioritized
tranches. The risk of a tranche is determined by the attachment point of the tranche,
which defines the point at which losses in the underlying portfolio begin to reduce the
tranche notional, and the detachment point, which defines the point at which losses in
the underlying portfolio reduce the tranche notional to zero. The buyer of protection
makes coupon payments on the notional amount of the remaining size of the tranche,
which is the initial tranche size less losses due to defaults. This structure is illustrated
in Table 1 for the CDX.NA.IG index.

The coupon payments for these three contracts are typically made quarterly, on the
IMM dates, which are the 20th of March, June, September, and December, unless this
date is a holiday, in which case the payment is made on the next business day. If a
contract is entered in between two such dates, the buyer of protection receives from the
seller of protection the accrued premium since the last IMM date.
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Tranche Attachment Point Detachment Point Quote Convention
Equity 0% 3% 500 bps running + upfront
Junior Mezzanine 3% 7% all running
Mezzanine 7% 10% all running
Senior Mezzanine 10% 15% all running
Senior 15% 30% all running
Super Senior 30% 100% all running

Table 1: Tranche structure of the CDX.NA.IG index, which has 125 equally weighted North-American

investment-grade issuers in the underlying portfolio.

1.4 Data Sources

Citi and Morgan Stanley provided 5, 7, and 10-year CDX.NA.IG index and tranche bid-
and ask-spreads. Markit provided 5, 7, and 10-year CDX.NA.IG tranche mid-market
spreads, and 1, 5, 7, and 10-year CDS mid-market spreads for the CDX.NA.IG members.

We used 3-month, 6-month, 9-month, 1-year, 2-year, ..., 10-year US LIBOR swap
rates to estimate the discount function Bt (T ) at each point in time t. Specifically, for
these standard maturities we used swap rates from the Bloomberg system, while for
non-standard maturities we used cubic-spline interpolation of implied forward rates to
determine the spot rate. Swap rates are widely regarded as the best measure of funding
costs for banks - the biggest participant in the market for synthetic credit derivatives -
over various time horizons.

2 Descriptive Analysis

This section gives a brief overview of historical CDX.NA.IG index and tranche spreads
and provides some descriptive statistics. In the subsequent analysis we will frequently
refer to the credit market events mentioned here. Unless mentioned otherwise, market
prices refer to mid-market prices for the remainder of the paper.

Figure 2 shows the historical spread for the three standard maturities of the CDX.NA.IG
index. We see that credit spreads have narrowed considerably between October 2003
and November 2006, although this narrowing was sharply interrupted in May 2005. Cor-
responding tightenings of spreads affected the tranches making up the index. However,
there are some peculiarities in the history of tranche spreads that are worth mentioning
in order to interpret the time-series results in Section 5 and 7.

A principal component analysis of the standardized daily tranche spread changes
(∆Sj/

√
V ar (∆Sj) : 1 ≤ j ≤ 5) with j = 1 for the equity tranche, up to j = 5 for the
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Figure 2: Historical spread of the on-the-run CDX.NA.IG index for maturity equal to 5 years (solid

line), 7 years (dashed line) and 10 years (dotted line). The vertical lines represent the bi-annual roll-over

dates.

senior tranche, gives the first three principal component weighting vectors

PC1 =




0.40
0.48
0.48
0.45
0.42




, PC2 =




−0.84
0.05
0.30
0.44

−0.07




, PC3 =




−0.22
−0.32
−0.22
−0.08

0.89




. (1)

The first three principal components explain 76%, 10%, and 8% of the variance of changes
in tranche spreads, respectively. As can be seen from (1), the first principal component
reflects a market-wide increase of credit risk, the second component reflects an increase
of tail risk at moderate loss levels (mezzanine and senior mezzanine tranche), and the
third component corresponds to an increase of tail risk at very extreme loss levels (senior
tranche). Figure 3 shows the historical evolution of the first three principal components
of standardized tranche spread changes between October 2003 and April 2006.5 The

5We define the evolution of a principal component as the performance of a portfolio of credit tranches
with position sizes proportional to the principal component entries, normalized by tranche notional size
and tranche spread volatility.
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Figure 3: Historical evolution of the first three principal component portfolios (solid, dashed and

dotted line, respectively) for the tranche spreads of the 5-year CDX.NA.IG index.

downward trend in the first principal component portfolio simply reflects the fact that
credit spreads have narrowed considerably during this time period. The evolution of
the second and third component shows that perceived default risk at extreme loss levels
increased dramatically in May 2006, while perceived default risk at moderate loss levels
apparently collapsed. This shock to the credit market was caused by the same-day
downgrades of Ford Motor Company and General Motors Corp. to a sub-investment-
grade rating (that is, lower than BBB−), which led to selling of bonds of these firms by
investors who are allowed to hold only investment-grade rated securities. At the same
time, a partial take-over attempt of General Motors Corp. led to a sharp increase in
its share price. The combination of these two events ”caused the relationship between
prices of certain assets to change in an unexpected way”. (See BIS Quarterly Review,
June 2005, for a detailed discussion.)

Table 2 provides some summary statistics about the riskiness of reference entities
that were part of the CDX.NA.IG index at least once between September 2004 and
November 2006.

9



Rating Daily
Counts

1yr Default
Probability

5yr Default
Probability

Average 1-yr
CDS Spread

Average 5-yr
CDS Spread

AAA 2040 0.00% 0.20% 5.3 18.7
AA 1530 0.08% 0.97% 4.6 15.8

A 23066 0.08% 1.37% 7.1 27.5
BBB 33891 0.30% 3.51% 13.2 51.4

BB 7422 1.43% 10.04% 61.4 150.5
B 2040 4.48% 20.89% 187.8 334.2

Table 2: Summary statistics on the default risk of reference entities that were part of the CDX.NA.IG

index at least once between September 21, 2004, and November 30, 2006. Historical 1-year and 5-year

default probabilities were taken from Moody’s Investor Service, ’Historical Default Rates of Corporate

Bond Issuers, 1920-1999’.

3 Model Setup

This section describes a model for the joint distribution of various obligor default times
under a risk-neutral probability measure. The setup is the same as in Eckner (2009),
which in turn is similar to the one of Duffie and Gârleanu (2001) and Mortensen (2006).

To this end, we fix a filtered probability space (Ω,F , (Ft) , P) satisfying the usual
conditions.6 Up to purely technical conditions,7 the absence of arbitrage implies the
existence of an equivalent martingale measure Q, such that the price at time t of a
security paying an amount Z at a bounded stopping time τ > t is given by

Vt = EQ
t

(
e−

∫ τ

t
rsdsZ

)
,

where r is the short-term interest rate and EQ
t denotes expectation under Q conditional

on all available information up to time t.
Under the equivalent martingale measure Q, for each individual firm i, a default time

τ i is modeled using Cox processes, also known as doubly stochastic Poisson processes.8

Specifically, the default intensity of obligor i is a non-negative real-valued progressively
measurable stochastic process, which will be defined below. Conditional on the intensity
path {λQ

it : t ≥ 0}, the default time τ i is taken to be the first jump time of an inhomo-
geneous Poisson process with intensity λQ

i . In particular, the default times of any set
of firms are conditionally independent given the intensity paths, so that correlation of
default intensities is the only mechanism by which correlation of default times can arise.

6For a precise mathematical definition not offered here, see Karatzas and Shreve (2004) and Protter
(2005).

7See Harrison and Kreps (1979), Harrison and Pliska (1981), and Delbaen and Schachermayer (1999).
8See for example Lando (1998) and Duffie and Singleton (2003).
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For t > s, risk-neutral survival probabilities can be calculated via

Q (τ i > t | Fs) = EQ
s

(
Q
(
τ i > t | {λQ

it : t ≥ 0} ∪ Fs

))
= 1{τ i>s}E

Q
s

(
e−

∫ t

s
λ

Q
iudu
)

, (2)

where the expectation is taken over the distribution of possible intensity paths. The
large and flexible class of affine processes allows one to calculate (2) either explicitly or
numerically quite efficiently. See Duffie, Pan, and Singleton (2000), and Duffie, Filipović,
and Schachermayer (2003) for a more general discussion of affine processes.

Due to their computational tractability, we use so-called basic Affine Jump Diffusions
(bAJD) as the building block for the default intensity model. Specifically, we call a
stochastic process Z a basic AJD under Q if

dZt = κQ(θQ − Zt) dt + σ
√

Zt dBQ
t + dJQ

t , Z0 ≥ 0, (3)

where under Q, (BQ
t )t≥0 is a standard Brownian motion, and (JQ

t )t≥0 is an independent
compound Poisson process with constant jump intensity lQ and exponentially distributed
jumps with mean µQ. For the process to be well defined, we require that κQθQ ≥ 0 and
µQ ≥ 0.

3.1 Risk-Neutral Default Intensities

We now make precise the multivariate model of default times for m obligors. For 1 ≤
i ≤ m, the risk-neutral default intensity of obligor i is

λQ
it = Xit + aiYt, (4)

with idiosyncratic component Xi and systematic component Y . Under Q, X1, . . . , Xm

and Y are independent basic AJDs with

dXit = κQ
i (θQ

i − Xit)dt + σi

√
Xit dB

Q,(i)
t + dJ

Q,(i)
t (5)

dYt = κQ
Y (θQ

Y − Yt)dt + σY

√
Yt dB

Q,(Y )
t + dJ

Q,(Y )
t . (6)

Here, JQ,(Y ) and JQ,(i) have jump intensities lQY and lQi , and jump size means µQ
Y and µQ

i ,
respectively. Hence, jumps in default intensities can either be firm-specific or market-
wide. Duffie and Gârleanu (2001) and Mortensen (2006) found the latter type of jumps to
be crucial for explaining the spreads of senior CDO tranches, which are heavily exposed
to tail risk events. Schneider, Sögner, and Veža (2007) examined the time series of 282
credit default swap spreads and found evidence for mainly positive jumps in default
intensities.

3.1.1 Parameter Restrictions

This section discusses restrictions on the parameters in (5) and (6) that (i) make the
model identifiable and (ii) reduce, for parsimony, the number of free parameters. The
constraints are the same as in Eckner (2009) and similar to those of Duffie and Gârleanu
(2001) and Mortensen (2006).
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Model Identifiability. The restriction

1

m

m∑

i=1

ai = 1

is imposed to ensure identifiability of the model.9

Parsimony. Our model specification is relatively general with 5m+5 default intensity
parameters and 2 liquidity parameters, as well as m + 1 initial values for the factors.
Since we are especially interested in the economic interpretation of the parameters, we
favor a parsimonious model which is nevertheless flexible enough to closely fit tranches
spreads. First, we take the common factor loading ai of each obligor i to be equal to the
obligor’s 5-year CDS spread divided by the average 5-year CDS spread of the current
credit index members, that is

ai =
ccds
i,t,5

Avg
(
ccds
i,t,5

) , (7)

where ccds
i,t,5 denotes the 5-year CDS spread at time t for the i-th reference entity. More-

over, we impose the parameter constraints

κQ
i = κQ

Y ≡ κQ, (8)

σi =
√

aiσY ≡ √
aiσ, (9)

µQ
i = aiµ

Q
Y ≡ aiµ

Q, (10)

ω1 =
lQY

lQi + lQY
, (11)

ω2 =
aiθ

Q
Y

aiθ
Q
Y + θQ

i

, (12)

which reduces the number of free parameters to just seven. Feldhütter (2007) examines to
what extent (7)-(12) are empirically supported by CDS data for firms in the CDX.NA.IG
index, and finds these assumptions in general to be fairly reasonable. See also Eckner
(2009).

The constraints (7)-(12) imply that λQ
i is also a basic AJD, which is not generally

the case for the sum of two basic AJDs, see Duffie and Gârleanu (2001), Proposition 1.
Specifically,

dλQ
it = κ

((
θQ

i + aiθ
Q
Y

)
− λit

)
dt +

√
aiσ

√
λQ

it dB̃
Q,(i)
t + dJ̃

Q,(i)
t ,

9If all factor loadings ai are replaced by cai for some positive constant c, then replacing the param-
eters (Y0, κ

Q
Y , θQ

Y , σY , lQY , µQ
Y ) with (Y0/c, κQ

Y , θQ
Y /c, σY /

√
c, lQY , µQ

Y /c) leaves the dynamics of aiY (and

therefore also the joint dynamics of λQ
i ) unchanged.
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or in short-hand

λQ
i = bAJD(λQ

i,0, κ
Q, θQ

i + aiθ
Q
Y ,

√
aiσY , lQi + lQY , µQ

i ) =

= bAJD(λQ
i,0, κ

Q, θ̃
Q

i , σ̃i, l̃
Q, µQ

i ),

where θ̃
Q

i ≡ θQ
i + aiθ

Q
Y and l̃Q ≡ lQi + lQY .

It is easy to show that θY = ω2Avg(θ̃
Q

i ) ≡ ω2θ̃
Q

Avg and that θ̃
Q

i = aiθ̃
Q

Avg for each i,
so that we can characterize the risk-neutral model of joint default times by the seven
parameters

ΘQ =
{
κQ, θ̃

Q

Avg, σ, l̃Q, µQ, ω1, ω2

}

and the m+1 initial values of the factors.10 Even though the constraints (7)-(12) greatly
simplify the model setup, a model without these constraints would be just as tractable,
since the computational techniques described in Eckner (2009) could still be applied.

4 Pricing and Model Calibration

After specifying the multivariate default intensity dynamics, we turn to the pricing of
various credit derivatives. The general procedure for pricing credit derivatives is setting
the value of the fixed leg (the market value of the payments made by the buyer of
protection) equal to the value of the protection leg (the market value of the payments
made by the seller of protection) and to solve for the fair credit spread. Since the pricing
of credit risky securities in this framework is by now standard, we keep this section fairly
short and refer the interested reader to Mortensen (2006) and Eckner (2009) for a detailed
description.

For the purpose of pricing credit risky securities, we adopt the widely used assump-
tion:11

Assumption 1 Under the risk-neutral probability measure Q,

(i) Default intensities and interest rates are independent.

(ii) Recovery rates are independent of default intensities.

As shown by Mortensen (2006) and Eckner (2009), model-implied CDS and credit
index spreads can be calculated explicitly under assumption 1, while model-implied

10As in Eckner (2009), we also incorporated two liquidity premia parameters for CDS and credit
tranche contracts. However, they are of minor importance for the subsequent analysis.

11See Eckner (2009) for a discussion of these assumptions.
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tranche spreads can be calculated in a computationally efficient manner. For complete-
ness, we illustrate the pricing of the fixed leg of a CDS contract with set of coupon
payment dates {tl : 1 ≤ l ≤ n}. At a time s and under Assumption 1, the market value
the fixed equals

V cds,Fixed
t (s) = Nic

cds
i

∑

{l:tl>s}

Bs (tl)
(tl − tl−1)

360
Qs (τ i > tl) (13)

−Nic
cds
i

s − max (tl : tl ≤ s)

360
,

using an Actual/360 day-count convention, where Ni is the notional of the CDS contract,
ccds
i the coupon, and Bt (T ) is the discount function at time t for a unit payoff at maturity

T ≥ t. The first term in (13) is the present value of future coupon payments, while the
second term reflects the accrued premium since the most recent coupon payment date.
In the affine two-factor model of Section 3.1, the survival probabilities Qs (τ i > tl) are
known explicitly via the moment generating function of a basic AJD. See Duffie and
Gârleanu (2001), and Eckner (2009) for details. Hence, the market value of the fixed
leg (13) can be calculated explicitly in this framework. Again, see Mortensen (2006)
and Eckner (2009) for the details on valuing the default leg of a CDS contract, and on
valuing credit indices and tranches in this framework.

4.1 Market Frictions

When pricing credit derivatives one must account for various market frictions, as well as
for certain trading conventions in this market. First, credit indices and credit tranches
recognize only bankruptcy and “failure to pay” as credit events, whereas CDS contracts
usually also include certain forms of restructuring. Second, index arbitrage traders are
the medium by which the level of a CDS index is kept in line with so-called intrinsics,
which is the fair index level implied by individual CDS spreads. However, because of
execution risk and the cost of paying the bid-offer spread when trading individual credit
default swaps, index arbitrage traders only become active when the index level differs
by at least a couple of basis points from the intrinsics. To account for these effects, we
incorporated a time-varying index-CDS basis and index-tranche basis into the model,
see Eckner (2009) for details.

4.2 Model Calibration to CDS and Tranche Spreads

This section links model-implied and mid-market CDS, credit index, and credit tranche
spreads. To this end, let ctr

j,t,M (S) for S ∈ {MI, MK} denote the spread at time t of the
j-th tranche with maturity M (usually 5, 7 or 10 years) as implied by the model (MI),
and as reported by Markit (MK). Similarly, let ccds

i,t,M (MK) denote the spread at time t
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of the i-th CDS with maturity M , as reported by Markit. Finally, let cidx
t,M (C) be the

M−year index spread at time t as reported by Citi.
Model-implied and market-observed spreads satisfy the measurement equations

ctr
j,t,M (MK) = ctr

j,t,M (MI) + εtr
j,t,M (MK) (14)

ccds
i,t,M (MK) = ccds

i,t,M (MI) + εcds
i,t,M (MK)

cidx
t,M (C) = cidx

t,M (MI) + εidx
t,M (C) ,

where the measurement errors εtr
j,t,M (MK), εcds

i,t,M (MK), and cidx
t,M (C) are independent

under P across time, tranche/CDS, maturity and data source, and distributed as

εtr
j,t,M (MK) ∼ N

(
0, ctr

j,t,M (MK)2 σ2
tr

)

εcds
i,t,M (MK) ∼ N

(
0, ctr

j,t,M (MK)2 σ2
cds

)

εidx
t,M (C) ∼ N

(
0, cidx

t,M (C)2 σ2
idx

)
.

Under these assumptions, the log-likelihood function is of the form

log LM
ΘQ (CDS, IDX, TR) = α + β · RMSE2

tr + γ · RMSE2
cds + δ · RMSE2

idx (15)

for some constants α, β, γ, δ with β, γ, δ < 0, where M denotes the set of maturities
under consideration, and CDS, IDX and TR denote the panel data of observed CDS,
credit index, and tranche spreads, respectively. Furthermore, RMSEtr is the relative
root mean square tranche pricing error defined by

RMSEtr
(
ΘQ,M

)
=

T∑

t=1

RMSEtr
t

(
ΘQ,M

)
(16)

RMSEtr
t

(
ΘQ,M

)
=

√√√√ 1

J

1

|M|

J∑

j=1

∑

M∈M

(
ctr
j,t,M (MI) − ctr

j,t,M (MK)

ctr
j,t,M (MK)

)2

, (17)

RMSEcds is the relative root mean square CDS pricing error

RMSEcds
(
ΘQ,M

)
=

T∑

t=1

RMSEcds
t

(
ΘQ,M

)
(18)

RMSEcds
t

(
ΘQ,M

)
=

√√√√ 1

m

1

|M|

m∑

i=1

∑

M∈M

(
ccds
i,t,M (MI) − ccds

i,t,M (MK)

ccds
i,t,M (MK)

)2

,

and RMSEidx is the relative root mean square credit index pricing error

RMSEidx
(
ΘQ,M

)
=

T∑

t=1

RMSEixd
t

(
ΘQ,M

)
(19)

RMSEidx
t

(
ΘQ,M

)
=

√√√√ 1

|M|
∑

M∈M

(
cidx
t,M (MI) − cidx

t,M (C)

cidx
t,M (C)

)2

.
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Maximizing the log likelihood (15) is therefore equivalent to minimizing a weighted
sum of squares of RMSEtr, RMSEcds, and RMSEidx. The fitting criterion is thus of the
form

C
(
ΘQ
)

= ωtrRMSEtr
(
ΘQ,M

)2
+ ωcdsRMSEcds

(
ΘQ,M

)2
(20)

+ωidxRMSEidx
(
ΘQ,M

)2
,

where the weights ωtr, ωcds and ωidx are inversely related to the noisiness of the reported
market data.

Remark 1 Rather than making strong independence assumptions regarding the mea-
surement errors in (14), one can alternatively directly define (20) as the fitting criterion.
The likelihood framework will however be useful for parameter inference in Section 6.

The following algorithm was used for minimizing (20), that is, for fitting the basic
AJD model of Section 3.1 to market-observed CDS, credit index, and credit tranche
spreads:

Algorithm 1

1. For fixed parameter vector Θ and initial systematic intensity Y0, individual CDS
spreads are calibrated by varying the initial intensities λi0 for 1 ≤ i ≤ m subject to
the constraint λi0 ≥ aiY0, and minimizing the fitting criterion (19).

2. Solve for the index-CDS and index-tranche basis, see Eckner (2009).

3. Vary the parameter vector Θ and the initial systematic intensity Y0 to minimize
the criterion function (20). At each revision of Θ or Y0, Step 1 and 2 are repeated.

Step 3 was implemented by fitting each parameter separately and iterating over the
set of parameters. Convergence typically occurred after 20 to 30 iterations.

5 Results – Time Series Analysis

Mortensen (2006) and Eckner (2009) examine the fit of a basic AJD model to CDX
tranche spreads at a fixed point in time. This section examines the fit of such a model,
at a weekly frequency, to 5-year CDS, index and tranche spreads between September
2004 and November 2006.

We first examined a model with fixed parameters, so that only the idiosyncratic
factors Xit and the systematic factor Yt can vary over time, but for example not their
jump intensity or volatility. As expected, the model fit to the time series of tranches
spreads turned out to be poor, with relative tranche pricing errors frequently exceeding
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50%. However, expecting a model with fixed parameters to fit the time series of tranche
spreads over a multi-year time-horizon is probably quite unrealistic, simply because
investors’ risk aversion often changes dramatically over time. See also Feldhütter (2007),
who fitted a similar constant parameter model to six months of data, and found that
time-variation in the senior mezzanine and senior tranche spreads cannot be captured
by such a model.

In this section, we therefore examine a model with time-varying parameters. By this
we mean fitting a separate model for each point in time t, so that each date has its
own set of risk-neutral default intensity parameters ΘQ

t . Hence, parameters are allowed
to change arbitrarily from one day to the next one without imposing any time series
constraints, so that for example the realized volatility of the common factor Y need not
necessarily be consistent with the model parameter σY . This section therefore merely
examines the potential of the basic AJD model from Section 3 to fit market-observed
tranche spreads at different points in time. This procedure is a relatively weak test of
model specification, but one that is common in the financial industry.

5.1 Empirical Analysis

For this section, we replace the definition of the relative RMSE (17) by the following
robust version

R̃MSE
tr

t

(
ΘQ

t ,M
)

=

√√√√ 1

J

1

|M|

J∑

j=1

∑

M∈M

(REj,t,M)2, (21)

where

RE2
j,t,M = min

[(
ctr
j,t,M (MI) − ctr

j,t,M (MK)

ctr
j,t,M (MK)

)2

,

(
ctr
j,t,M (MI) − ctr

j,t,M (MS)

ctr
j,t,M (MS)

)2 ]

×
(
1{ctr

j,t,M
(MI)<min(ctr

j,t,M
(MS),ctr

j,t,M
(MK))}

+ 1{ctr
j,t,M

(MI)>max(ctr
j,t,M

(MS),ctr
j,t,M

(MK))}
)
, (22)

and where ctr
j,t,M (MI), ctr

j,t,M (MK), and ctr
j,t,M (MS) denote for time t the spread of the j-th

tranche with maturity M , as implied by the model (MI), reported by Markit (MK) and
reported by Morgan Stanley (MS), respectively. In particular, the relative pricing error
(22) is zero if the model-implied tranche spread lies in between the market mid-prices
reported by Markit and Morgan Stanley. The fitting criterion (21) mitigates the effect
of a few outliers in the data that would otherwise cloud the results of the subsequent
analysis.

Figure 4 shows the time series of robust relative tranche pricing errors (22) for the
basic AJD model of Section 3.1, when fitted to the 5-year CDX.NA.IG index between
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Figure 4: Robust relative tranche pricing errors (22) for the fitted basic AJD model of Section 3.1.

Positive values correspond to a model-implied spread above the market-observed spread, and vice versa.

September 2004 and November 2006.12 First, we see a pronounced downward trend over
time in the relative magnitude of pricing errors.13 Since we are measuring pricing errors
in relative terms, this pattern does not simply reflect the fact that credit spreads have
narrowed considerably between September 2004 and November 2006. The reduction of
absolute tranche pricing errors in fact has been even more pronounced. Consistent with
Longstaff and Rajan (2008), we find that the largest pricing errors occurred shortly after
the introduction of the CDX index and tranche contracts, but that these discrepancies
largely disappeared within a couple of months, potentially reflecting an evolution towards
a more efficient market for structured credit derivatives, or at least more homogeneity
in the models applied in industry practice.14

12On dates for which either not all CDS quotes were available or for which we were unable to match
all index members with the individual company identifiers, we calculated the portfolio loss distribution
by excluding these companies, and by scaling up the index exposure with respect to the remaining firms
in order to keep the portfolio notional constant.

13Using (17) as of the relative RMSE, instead of robust version (21), would have caused a few one-day
spikes in the tranche pricing errors to appear in Figure 4. An analysis of the tranche spreads as reported
by Markit and Morgan Stanley revealed, that in most of these cases, Morgan Stanley’s reported bid-ask
range of the tranche spread did not include the market-mid price reported by Markit, and vice versa.

14However, when fitting the whole term-structure of 5, 7, and 10-year tranche spreads instead of just
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Figure 5: Normalized credit spread of the equity (solid line), mezzanine (dashed line) and senior

tranche (dotted line) between April 11, 2005, and May 18, 2005, for the 5-year CDX.NA.IG index.

The downward trend in relative tranche pricing errors was interrupted by a sharp
increase around May 2005, an episode in the credit market that is now commonly referred
to as the ”GM downgrade”, or the ”correlation crunch”, see BIS Quarterly Review, June
2005. Figure 5 shows the normalized tranche spread for the equity,15 mezzanine and
senior tranche of the 5-year CDX.NA.IG index between April 11, 2005, and May 18,
2006. We see that, over a period of a few weeks, the spread of the equity and senior
tranche increased by about 80%, while the spread of the mezzanine tranche hardly
changed at all. Since the mezzanine tranche is located in between the equity and senior
tranche in terms of priority of payments, such a behavior of tranche spreads can be
explained only by an extreme change in perceived default correlation. Figure 4 shows
that this change in default correlation cannot be captured by the basic AJD model of
Section 3.1, but that the equity, junior mezzanine and senior mezzanine tranche were
trading 5-10% above the model-implied spread on May 16, 2005.

5-year spreads, pricing discrepancies are still quite large, although there seems to be a downward trend
present.

15In case of the equity tranche we used the normalized up-front payment.
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5.2 Parameter Stability over Time

Table 3 reports the fitted model parameters σY , κQθ̃
Q

Avg + l̃QµQ, and ω1 at a monthly
frequency between September 2004 and November 2006.16 The first column shows a
pronounced downward trend in the volatility of default intensities, and therefore also of
CDS spread volatilities, since both quantities are closely related. The second column
indicates that optimism about the future credit market environment increased between
September 2004 and November 2006. The last column, which shows the ratio of the
systematic to total jump intensity, indicates that perceived systematic jump risk declined
relative to firm-specific jump risk. In summary, the parameter time series in Table 3 show
a significant reduction in perceived market-wide credit risk between September 2004 and
November 2006. We also see that the risk-neutral default intensity parameter vector ΘQ

t

is relatively stable over time, especially for periods during which tranche spreads did not
change much, which is important for the model’s applicability to hedging. See Eckner
(2009) for a discussion of hedging tranches against various risk factors in the credit
market, when using the basic AJD framework of Section 3.1.

16The time series of the other model parameters are qualitatively similar and available upon request.
See Eckner (2009) for a discussion and interpretation of these parameters.
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Date σY (κQθ̃
Q

Avg + l̃QµQ) × 104 ω1

9/21/2004 0.122 37.1 0.43
11/2/2004 0.134 39.9 0.42
12/1/2004 0.122 34.2 0.35
1/4/2005 0.106 24.6 0.36
2/1/2005 0.131 37.9 0.42
3/1/2005 0.128 39.1 0.45
4/1/2005 0.122 44.1 0.48
5/2/2005 0.105 52.2 0.58
6/1/2005 0.104 44.7 0.36
7/1/2005 0.081 35.6 0.48
8/1/2005 0.084 24.3 0.48
9/1/2005 0.093 24.3 0.59

10/3/2005 0.091 18.6 0.36
11/1/2005 0.094 26.2 0.27
12/1/2005 0.109 35.3 0.24
1/3/2006 0.106 26.6 0.29
2/1/2006 0.093 21.9 0.28
3/1/2006 0.083 18.2 0.36
4/3/2006 0.072 27.8 0.21
5/1/2006 0.083 26.6 0.20
6/1/2006 0.093 33.9 0.25
7/3/2006 0.091 30.9 0.15
8/1/2006 0.098 31.2 0.20
9/1/2006 0.088 26.5 0.20

10/2/2006 0.084 24.0 0.28
11/1/2006 0.083 22.5 0.19

Table 3: Time series of fitted model parameters at a monthly frequency between September 2004

and November 2006. σY is the volatility of the systematic risk factor, κQ the mean reversion speed of

systematic and idiosyncratic risk factors, θ̃
Q

Avg the average mean reversion level of default intensities,

l̃Q the jump intensity and µQ the average expected jump size of default intensities, and ω1 the fraction

of jumps that are systematic.
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6 Joint Model for λP and λQ

This section describes a joint model for physical and risk-neutral default intensities,
which allows one to quantify the sizes of various types of risk premia in the credit
market. We start with a couple of remarks about empirical features that such a joint
model should be able to capture.

In general, there are two types of default intensities that are of interest for a given
company, namely its physical (or real-world) default intensity (that under P is denoted
by λP

i ) and its risk-neutral default intensity (that under Q is denoted by λQ
i ) . The

quantity

λQ
it

λP
it

− 1

is commonly referred to as the jump-to-default (JTD) risk premium for company i at
time t, and can be seen as instantaneous compensation to investors for being exposed
to the risk of instantaneous default of company i. Under the conditional diversification
hypothesis (see Jarrow, Lando, and Yu (2005)), the jump-to-default risk premium is
equal to zero, since JTD risk can be diversified away. However, empirical studies have
found the average value of λQ

it/λ
P
it−1 to be somewhere in the range between 1.5 and 4 for

corporate bonds and credit-default-swaps of BBB rated US issuers, although this value
can fluctuate strongly over time. See for example Berndt, Douglas, Duffie, Ferguson,
and Schranz (2005), Amato and Remolona (2005) and Saita (2006). Amato (2005) finds
the JTD risk premium to be inversely related to credit ratings, and to be as high as 625
for AAA and as low as 2.2 for BB-rated debt. These findings indicate that the liquid
universe of credit risky securities is probably not large enough to diversify away short-
term default risk and that investors therefore demand instantaneous compensation above
and beyond compensation for instantaneous expected losses when holding a portfolio of
corporate credits. In addition, borrowing constraints are likely to be at least partially
responsible for the dramatic variation of the JTD risk premium across rating categories.
For example, an investor subject to borrowing constraints might be able to reach a
certain target expected return only by investing in high-yielding assets, but not by
taking a leveraged position in lower-yielding assets.17

A second type of risk premia that is deemed to be important in the credit market
is compensation for mark-to-market risk, which is the uncertainty regarding the future
evolution of risk factors in general, and default intensities in particular. See for example
Berndt, Douglas, Duffie, Ferguson, and Schranz (2005) and Saita (2006).

17A similar explanation has been offered for the historical risk-adjusted outperformance of low-beta
over high-beta stocks. See Black, Jensen, and Scholes (1972) and Black (1993).

22



6.1 Joint Model Specification

This section makes precise the joint model for physical and risk-neutral default intensi-
ties. We again use an affine two-factor model of the form

λP
it = bP

itXit+ aP
itYt,

λQ
it = Xit+ aQ

itYt,
(23)

for 1 ≤ i ≤ m, where Xi and Y are independent basic AJDs under P and under Q.
We use time-varying model parameters ΘQ

t , but for notational simplicity suppress this
time-dependence in most equations.18 The dynamics of Xi are given by

dXit = κP
i

(
θP

i − Xit

)
dt + σi

√
Xit dB

P,(i)
t + dJ

P,(i)
t

dXit = κQ
i

(
θQ

i − Xit

)
dt + σi

√
Xit dB

Q,(i)
t + dJ

Q,(i)
t

(24)

for 1 ≤ i ≤ m. Under P, BP,(i) are independent Brownian motions and JP,(i) independent
compound Poisson processes. Under Q, BQ,(i) are independent Brownian motions and
JQ,(i) independent compound Poisson processes.

Similarly, the dynamics of Y are given by

dYt = κP
Y

(
θP

Y − Yt

)
dt + σY

√
Yt dB

P,(Y )
t + dJ

P,(Y )
t ,

dYt = κQ
Y

(
θQ

Y − Yt

)
dt + σY

√
Yt dB

Q,(Y )
t + dJ

Q,(Y )
t .

(25)

Under P, BP,(Y ) is a Brownian motion and JP,(Y ) an independent compound Poisson
process. Under Q, BQ,(Y ) is a Brownian motion and JQ,(Y ) an independent compound
Poisson process.

To simplify notation, let

AP
t = (aP

it)1≤i≤m AP = (AP
t )t≥0

BP
t = (bP

it)1≤i≤m BP = (BP
t )t≥0

AQ
t = (aQ

it)1≤i≤m AQ = (AQ
t )t≥0

Xt = (Xit)1≤i≤m X = (Xt)t≥0

ΛP
t = (λP

it)1≤i≤m ΛP = (ΛP
t )t≥0

ΛQ
t = (λQ

it)1≤i≤m ΛQ = (ΛQ
t )t≥0,

and

Y = (Yt)t≥0,
ΘP

t = (κP
Y,t, θ

P
Y,t, σY,t, l

P
Y,t, µ

P
Y,t, (κ

P
i,t, θ

P
i,t, l

P
i,t, µ

P
i,t)1≤i≤m)

ΘP = (ΘP
t )t≥0

ΘQ
t = (κQ

Y,t, θ
Q
Y,t, σY,t, l

Q
Y,t, µ

Q
Y,t, (κ

Q
i,t, θ

Q
i,t, l

Q
i,t, µ

Q
i,t)1≤i≤m)

ΘQ = (ΘQ
t )t≥0,

18We briefly examined a model with time-fixed factor loadings in (23), but were unable to achieve
an acceptable fit since the ratios λQ

it/λP
it often vary dramatically over time. See also Section 7.1.
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and

CDSt = (ccds
i,t,M)1≤i≤m,M∈{5,7,10} CDS = (CDSt)t≥0

TRt = (ctr
j,t,M)1≤i≤m,M∈{5,7,10} TR = (TRt)t≥0

IDXt = (cidx
t,M)M∈{5,7,10} IDX = (IDXt)t≥0,

where ΛP is the output of the model for physical default intensities estimated by Duffie,
Saita, and Wang (2007) and Duffie, Eckner, Horel, and Saita (2009). Their model was
fitted to a 25-year US corporate default history of 2,793 companies. (See Appendix A
for details.) By taking the output of their model as given, we reduce the efficiency of
our parameter estimation procedure compared to full maximum likelihood estimation,
but avoid the computational complexity that a joint estimation would require.

We must conduct inference only about Θ ≡
(
AP, BP, AQ, ΘP, ΘQ

)
and Y, since X

is then determined implicitly by ΛP, AP, BP and Y via (23). In the following, we
therefore write Xit=Xit

(
aP

it, b
P
it, Yt, λ

P
it

)
to emphasize that Xit is determined by the data

and parameters in parentheses. For a fixed set of parameters Θ, using Bayes’ rule and
the Markov property for Xi and Y, we can write the likelihood function LΘ of the data
as

LΘ

(
Y, ΛP, CDS, TR, IDX

)
(26)

∝ pΘ (Y) pΘ

(
ΛP, CDS, TR , IDX |Y

)

= pΘ (Y) pΘ

(
ΛP |Y

)
pΘ (CDS, TR, IDX |Y)

= pΘ (Y0) ×
T∏

t=1

pbAJD

(
Yt | Yt−1, Θ

P
t−1

)

×
T∏

t=1

m∏

i=1

pbAJD

(
Xit

(
aP

it, b
P
it, Yt, λ

P
it

)
|Xi,t−1

(
aP

i,t−1, b
P
i,t−1, Yt−1, λ

P
i,t−1

)
, ΘP

t−1

)

×
T∏

t=0

pΘ (CDSt, TRt, IDXt |Xt, Yt) ,

where pbAJD denotes the transition density of a basic AJD.
For the parameter estimation, we again impose the constraints (7)-(12) on the risk-

neutral parameters, and in addition impose for each i and t,

κP
i,tθ

P
it = κQ

i,tθ
Q
it

κP
Y,tθ

P
Y,t = κQ

Y,tθ
Q
Y,t

aP
it = ω3,tλ

P
it.

(27)

The first two conditions in (27) correspond to a completely affine specification for the
market-price of diffusive risk, and ensure that Q is indeed an equivalent martingale
measure for P, see Appendix B for details. The last condition in (27) is used to arrive at
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a parsimonious model. A singular value decomposition of the sample covariance matrix
of (∆λP

it : 1 ≤ i ≤ m) gave a Spearman rank correlation of 0.91 between (i) the entries
of the first eigenvector and (ii) average default intensities Avgt(λ

P
it), so that taking aP

i

proportional to λP
i is not overly restrictive.

Full maximum likelihood inference of the model parameters via

Θ̂ = arg sup
Θ

LΘ

(
Y, ΛP, CDS, TR, IDX

)
,

for example using MCMC methods that treat X and Y as latent variables, would be
desirable, but is computationally extremely burdensome. In addition, stale prices and
market-microstructure noise in the CDS data would make the inference procedure prone
to outliers. We therefore settled for a slightly less efficient estimation procedure of
the model parameters, a mixture between maximum likelihood estimation and robust
method of moments, which is computationally more tractable and gives robust parameter
estimates. Before we turn to the actual fitting procedure, we need the following two
results:

Proposition 1 Let
〈
λP

i , λ
P
j

〉
(t) denote the continuous part of the quadratic covariation

between λP
i and λP

j in the time interval [0, t].19 Then

(i)
〈
λP

i , λ
P
j

〉
(t) =

∫ t

0
aP

isa
P
jsσ

2
Y,sYsds.

(ii) A consistent (for ∆t → 0) and model-free estimate of
〈
λP

i , λ
P
j

〉
(t) is given by

〈
λP

i , λ
P
j

〉
(t) =

1

2

{〈
λP

i + λP
j

〉
(t) −

〈
λP

i

〉
(t) −

〈
λP

i

〉
(t)
}

,

where for a stochastic process X that is observed at times {0, ∆t, 2∆t, . . ., n∆t =
t},

〈X〉 (t) =
n−1∑

i=1

|∆Xi∆t|
∣∣∆X(i+1)∆t

∣∣

denotes its realized power variation.

The first property follows directly from the definition of physical default intensities
via (23), (24) and (25), while the second property follows from the results in Barndorff-
Nielsen and Shephard (2004).

19The derivative of this process can be thought of as the instantaneous Brownian covariance between
λP

i and λP
j .
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Based on this corollary, we use

Ĉov
P

cont

(
λP

it, λ
P
jt

)
≡
〈
λP

i , λ
P
j

〉
(t) −

〈
λP

i , λ
P
j

〉
(t − 180)

180

as a rolling estimate of the continuous covariance between λP
i and λP

j at time t, where
time is measured in days.

The fitting procedure is follows:

Algorithm 2

1. Fit X, Y, and ΘQ (including {σY,t : 0 ≤ t ≤ T}) to the monthly times series of 5, 7
and 10-year CDS, credit index, and tranche spreads, again using the robust version
(21) of tranche pricing errors.20

2. The relation aP
it = ω3,tλ

P
it in (27) implies that

CovP
cont

(
λP

it, λ
P
jt

)
= aP

ita
P
jtCovP

cont
(Yt, Yt)

= ω2
3,tλ

P
itλ

P
jtσ

2
Y,tYt.

Hence for S = {(i, j) : 1 ≤ i, j ≤ m, i 6= j},

median(i,j)∈SCovP
cont

(
λP

it, λ
P
jt

)
= ω2

3,tσ
2
Y,tYt · median(i,j)∈S

(
λP

itλ
P
jt

)
,

so that a robust estimate of ω3,t is

ω̂3,t =

√√√√median(i,j)∈SĈov
P

cont

(
λP

it, λ
P
jt

)

σ2
Y,tYt · median(i,j)∈S

(
λP

itλ
P
jt

) .

3. Calculate the factor loadings aP
it and bP

it of physical default intensities on the com-
mon and firm-specific factors, respectively, via

aP
it = ω3,tλ

P
it

bP
it =

λP
it − aP

itYt

Xit

=
λP

it (1 − ω3,tYt)

Xit

·

20Excluding May 2005, the mean and standard deviation of the standardized residuals εY,t+1 =
∆Yt+1/(σY,t

√
Yt∆t) are equal to -0.14 and 1.06, respectively. A Kolmogorov-Smirnov test against a

standard normal distribution gave a p-value of 0.83. Hence, the volatility parameter time series σY,t is
fairly consistent with the time-series behavior of Y, even though this property was not enforced in the
estimation.
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4. Given X, Y, {σY,t : 0 ≤ t ≤ T}, and {σXi,t : 1 ≤ i ≤ m, 0 ≤ t ≤ T}, fit ΘP via max-
imum likelihood estimation, taking into account the completely affine constraints
(27). Due to the limited length of the dataset, we in addition impose the cross-
sectional constraints, for all i,

κP
i

= κP
X

lPi = lPX
µP

i = µP
X ,

where κP
X , lPX and µP

X are constants. For the common factor Y, we set

κP
Y =

ln (2)

3
≈ 0.23,

so that the half-life of a systematic shock is equal to three years, which is at the up-
per end of half of the typical US business cycle length, see King and Watson (1996),
and therefore leads to a conservative estimate of the market price of systematic risk
in (28) below. Moreover, we set

lPY = lQY
µP

Y = µQ
Y ,

which leads to a conservative estimate of risk premia associated with the systematic
factor.

Maximum likelihood estimation in Step 4 amounts to parameter inference about a
discretely-observed basic AJD. See Appendix C for details.

Remark 2 Step 4 in Algorithm 2 relies on the assumption that the parameters governing
physical default intensity dynamics do not change over time. In particular, companies
have a stationary capital structure and the mechanism by which companies default does
not exhibit any structural breaks. A change in legislation, like the Sarbanes-Oxley Act
of 2002, might cause a permanent shift in the default pattern of corporations, everything
else equal, so that this assumption may be violated.

6.2 Risk Premia

After specifying the joint model of physical and risk-neutral default intensity dynamics,
we are able to describe the difference between the probability measures P and Q in terms
of the Radon-Nikodym derivative dQ/dP. For the framework of Section 6.1, Appendix
B provides an explicit formula for dQ/dP and lists technical conditions under which Q
is indeed an equivalent martingale measure for P. A convenient way to ”summarize” the
Radon-Nikodym derivative dQ/dP is in terms of risk premia, namely:
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1.) The market price of diffusive risk (systematic and firm-specific)

2.) The pure jump-to-default risk premium

3.) The correlation risk premium

4.) The market price of jump arrival risk

5.) The market price of jump size risk

Theorem 5 in Appendix B shows that the Radon-Nikodym derivative dQ/dP can
be written in terms of the above risk premia, whose definitions are made precise in the
remainder of this section. Hence, there is no information ”lost” by directly using these
risk premia to evaluate investors’ risk preferences in the credit markets.

6.2.1 Market Price of (Diffusive) Risk

The market price of risk measures the compensation that investors receive for being
exposed to the risk that the realized value of a certain risk factor will turn out to be less
favorable than expected. Let Z be a basic AJD with

dZt = κP
(
θP − Zt

)
dt + σ

√
Zt dBP

t + dJP
t

dZt = κQ
(
θQ − Zt

)
dt + σ

√
Zt dBQ

t + dJQ
t .

Under P, BP,(Y ) is a Brownian motion and JP,(Y ) an independent compound Poisson
process with jump intensity lP,(Z) and exponentially distributed jumps with mean µP,(Z).
Under Q, BQ,(Y ) is a Brownian motion and JQ,(Y ) an independent compound Poisson
process with jump intensity lQ,(Z) and exponentially distributed jumps with mean µQ,(Z).
We call

ηMPR(Diff) (Zt) =
κQθQ − κPθP

σ
√

Zt

+
κQ − κP

σ

√
Zt

the market price of diffusive risk for Z. The constraint κQθQ = κPθP of the completely
affine risk premia specification implies that

ηMPR(Diff) (Zt) =
κQ − κP

σ

√
Zt.

Hence, for the joint model of default intensities in Section 6.1, the market price of
diffusive risk is

ηMPR(Diff) (Xit) =
κQ − κP

σi

√
Xit =

κQ − κP

σ

√
Xit

aQ
i
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for the firm-specific risk factors and

ηMPR(Diff) (Yt) =
κQ − κP

σ

√
Yt. (28)

for the systematic risk factor.

6.2.2 Jump-to-Default and Correlation Risk Premium

In the framework of Section 6.1, risk-neutral default intensities can be rewritten as

λQ
it = Xit + aQ

itYt =

=
bP
it

bP
it

Xit +
aP

it

bP
it

Yt +

(
aQ

it −
aP

it

bP
it

)
Yt =

=
1

bP
it

λP
it +

(
aQ

it −
aP

it

bP
it

)
Yt.

We call

ηpJTD
(
λQ

it

)
=

1

bP
it

− 1

the pure jump-to-default (pJTD) risk premium and

ηCor
(
λQ

it

)
=

(
aQ

it −
aP

it

bP
it

)
(29)

the correlation risk premium of company i at time t. Under this convention, risk-neutral
default intensities can be written as

λQ
it = λP

it + ηpJTD
(
λQ

it

)
λP

it + ηCor
(
λQ

it

)
Yt, (30)

reflecting instantaneous compensation for expected losses, pure jump-to-default risk and
correlation risk.

Remark 3 Our definition of the JTD risk premium is slightly different than the one
commonly used in the literature, which is λQ

it/λ
P
it − 1 (see for example Driessen (2005)

Berndt, Douglas, Duffie, Ferguson, and Schranz (2005), Amato (2005) and Saita (2006)),
since a multivariate model of credit risk allows one to further break down λQ

it/λ
P
it − 1

into compensation for pure JTD risk and correlation risk. See also Collin-Dufresne,
Goldstein, and Helwege (2003) for a non-doubly-stochastic framework where λQ

it/λ
P
it − 1

can be decomposed into compensation for pure JTD risk (called timing risk in the paper)
and contagion risk.
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Remark 4 Definition (29) of the correlation risk premium is warranted, since in a
doubly-stochastic setting, default time correlation is entirely attributable to correlation
across firms’ levels of future credit-worthiness, which in our case is driven by the sys-
tematic factor Y . In the presence of contagion, influence would also be able to ”flow” in
the opposite direction, in the sense that the default of a particular firm can impact the
joint future credit-worthiness of surviving companies above and beyond economic con-
ditions. In this case, the correlation risk premium would consist of compensation for (i)
correlation of future credit-worthiness due to joint dependence on economic conditions
and (ii) default contagion.

6.2.3 Market Price of Jump Arrival Risk

The market price of jump arrival risk is defined as

ηMPR(JA) (Xit) =
lQi
lPXi

for the idiosyncratic risk factors. Recall that due to the limited length of our dataset,
we assumed in Section 6.1 that ηMPR(JA) (Yt) is equal to zero, so that the market price of
jump arrival risk for the common factor is subsumed into the correlation risk premium.

6.2.4 Market Price of Jump Size Risk

The market price of jump size risk is defined as

ηMPR(JS) (Xit) =
µQ

i

µP
Xi

for the idiosyncratic risk factors. Recall that due to the limited length of our dataset,
we assumed in Section 6.1 that ηMPR(JS) (Yt) is equal to zero, so that the market price
of jump size risk for the common factor is subsumed into the correlation risk premium.

7 Results – Risk Premia

This sections presents the fit of the joint model for physical and risk-neutral default
intensities. It also describes a decomposition of credit tranche spreads into compensation
for expected losses and various types of risk premia.

7.1 Case Study – Alcoa Inc.

We start with a short case study to illustrate the differences between physical and
risk-neutral default intensities. For this purpose, we picked Alcoa Inc. (ticker symbol
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Figure 6: Evolution of default risk for Alcoa Inc. at a monthly frequency: 5-year CDS spread divided

by 0.6 (solid line), risk-neutral default intensity λQ
it (dotted line), and physical default intensity λP

it

(dashed line). Risk-neutral default intensities are from the fitted basic AJD model, while physical

default intensities are from the Cox proportional hazards model estimated by Duffie, Saita and Wang

(2007), and Duffie, Eckner, Horel and Saita (2006).

AA), which as of July 2007 had a market capitalization of $36bn and had maintained
a credit rating of ’A’ between September 2004 and November 2006. The historical one-
year default probability for this rating category is 0.08% according to Moody’s Investor
Service, ”Historical Default Rates of Corporate Bond Issuers, 1920-1999”.

Figure 6 shows the fitted physical and risk-neutral default intensity for Alcoa Inc.
between September 2004 and November 2006, together with the 5-year CDS spread
divided by 0.6, which for low-risk issuers is a rough estimate of the average risk-neutral
yearly default rate over the next five years. As expected, physical and risk-neutral
default intensities are highly correlated, having a sample correlation of 0.62, while the
sample correlation of monthly changes in intensities is 0.48. We also see that the risk-
neutral default intensity has been consistently higher than the physical default intensity,
indicating that jump-to-default and/or correlation risk is priced in the decomposition
(30).21 We also see that the ratio of the risk-neutral to physical default intensity λQ

i /λP
i

21For about 90% of the companies in our dataset, this pattern holds at each single point in time
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can vary considerably over time. For example, between May 2005 and November 2006
this ratio dropped from a value around 20 to a value around 5, which indicates that
in our framework it would be difficult to fit a model with constant factor loadings in
(23) to the time series of physical and risk-neutral default intensities.22 Finally, we see
that the average risk-neutral yearly default rate over the next five years is consistently
higher than the risk-neutral default intensity λQ

i , reflecting the typical upward-sloping
term-structure of default rates for investment-grade rated issuers.

7.2 Fitted Parameters

The fitted risk-neutral model parameters ΘQ from Step 1 in Algorithm 2 are similar to
those in Section 5, and therefore not reported here. Idiosyncratic credit risk shocks are
highly mean reverting under the physical probability measure, with κP

X = 1.34. Moreover,
idiosyncratic jumps are more frequent (lPX = 0.992) and smaller (µP

X = 12.5 basis points)
under the physical probability measure than under the risk-neutral probability measure.

Figure 7 shows the time series of the median ratios aP
it/a

Q
it and bP

it/b
Q
it, where the

median is taken at each point in time over the set of CDX.NA.IG members on that day.
We see that bP

it/b
Q
it is consistently less than one between September 2004 and November

2006, indicating that for the median firm, the pure jump-to-default risk premium is
positive in the decomposition (30) of risk-neutral default intensities. Most of the time
the median ratio aP

it/a
Q
it is smaller than the median ratio bP

it/b
Q
it, so that the median

correlation risk premium (29) is positive. Only around May 2005 did the correlation
risk premium turn significantly negative.

7.3 Tranche Spread Decomposition

The joint model for physical and risk-neutral default intensities allows one to decom-
pose credit index and tranche spreads into compensation for expected losses and the
risk premia described in Section 6.2. To this end, we combine the market price of diffu-
sive, jump-arrival, and jump size risk (ηMPR(Diff) (Xit), ηMPR(JA) (Xit) and ηMPR(JS) (Xit),
respectively) for the idiosyncratic factors Xi and simply call

ηMPR (Xit) =
{
ηMPR(Diff) (Xit) , ηMPR(JA) (Xit) , ηMPR(JS) (Xit)

}

the market price of firm-specific risk. The market price of diffusive risk and the market
price of jump risk are highly collinear, since risk-neutral drifts and jump parameters are
highly collinear, and are therefore poorly identified separately.

between September 2004 and November 2006. For the remaining 10% of the companies, the pattern
still holds most of the time.

22On May 2, 2005, and November 1, 2006, the share price of Alcoa Inc. was 29.19 and 28.33,
distance-to-default 5.93 and 5.59, and the five-year CDS spread 39 bps and 17 bps, respectively.
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Figure 7: Median ratio aP
it/aQ

it (solid line) and bP
it/bQ

it (dashed line), where the median is taken at each

point in time over the set of current CDX.NA.IG members.

Hence, we are left with four different risk premia and the following intuitive inter-
pretations:

Market Price of Systematic Risk: Measures the amount of expected return that
investors are willing to give up in order to guarantee that the economy develops
as expected.

Market Price of Firm-Specific Risk: Given the market-wide performance, this mea-
sures the amount of expected return that investors are willing to give up in order
to guarantee that a certain company performs in-line with the economy.

Correlation Risk Premium: Measures the amount of expected return that investors
are willing to give up to guarantee that the future credit-worthiness of a cer-
tain company is uncorrelated (as opposed to positively correlated) with the future
market-wide credit environment.

Pure Jump-to-Default Risk Premium: Measures investors’ compensation for the
uncertainty associated with the timing of default events, given both market-wide
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and firm-specific risk factors that determine default probabilities.23

The decomposition of tranche spreads into compensation for different sources of risk
is now obtained as follows:

Expected losses: Set the risk premia ηMPR (Xit), ηpJTD (Xit), ηCor (Xit) for 1 ≤ i ≤ m,
and ηMPR(Diff) (Yt) equal to zero. Recalculate credit index and tranche spreads.
The ratio of the new spread to the original spread represents the fraction of the
spread that is compensation for expected losses.

Risk Premia: The remaining fraction of credit spreads is distributed among (i) the
market price of systematic risk, (ii) the market price of idiosyncratic risk (iii)
the pure jump-to-default risk premium and (iv) the correlation risk premium.
The proration is done by setting these risk premia equal to zero, one at a time,
recalculating index and tranche spreads, and setting the spread contribution of
each risk premium proportional to the resulting reduction in index and tranche
spreads.24

Figure 1 in the introduction shows the resulting decomposition of credit index and
tranche spreads for the 5-year CDX index on November 1, 2006, which is the most re-
cent available date in our dataset. As expected, the equity tranche up-front payment
mainly represents compensation for expected losses due to defaults, compensation for
the risk of firm-specific credit deterioration, and compensation for the uncertainty asso-
ciated with the timing of defaults. As one moves up the capital structure, the fraction of
tranche spreads that is compensation for the risk of a market-wide credit deterioration
and compensation for correlation risk increases, and in case of the senior tranche ac-
counts for more than 95% of the total spread. As a consequence, senior mezzanine and
senior tranche spreads are likely to be much more sensitive to changes in investors’ risk
preferences than to changes in expected losses. This view has been expressed by many
researchers and practitioners (see Tavakoli (2003)), but to the best of our knowledge has
not previously been quantified.

In a manner analogous to the tranche spread decomposition above, one can obtain
a decomposition of risk-neutral expected portfolio losses into compensation for differ-
ent sources of risks, and attribute these components to individual tranches. For the
time period from September 2004 to November 2006, Table 4 shows sample averages
of the fractions of risk-neutral expected portfolio losses that correspond to individual

23Compensation for correlation risk premium and the pure jump-to-default risk would not be sepa-
rately identifiable in a univariate setting.

24Alternatively, one can sequentially add the risk premia. We found the resulting decomposition of
tranche spreads to be almost identical to the currently used decomposition. However, it is not clear in
which order the individual risk premia should be added.
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source-of-risk/tranche pairs. The last column and row show the total fraction of risk-
neutral expected portfolio losses that can be attributed the individual sources of risks
and tranches, respectively. Note that the total sum of the fractions is slightly less than
one, since the super senior (30 - 100%) tranche is not included in Table 4 due to lack of
available data. We see that by far the largest component of risk-neutral expected port-
folio losses is compensation to the equity tranche for idiosyncratic risk (28%), followed
by compensation to the equity tranche for pure JTD risk (22.7%), followed by com-
pensation to the equity tranche for actual expected losses (19.7%), and then followed
by compensation to the junior mezzanine tranche for systematic risk (4.2%). We also
see that compensation to senior tranches is only a small fraction (<2%) of risk-neutral
expected portfolio losses, and that this fraction is mostly compensation for systematic
and correlation risk.

0% - 3% 3% - 7% 7% - 10% 10% - 15% 15% - 30% Sum
Expected Losses 0.197

(0.090)
0.010

(0.008)
0.002

(0.004)
0.001

(0.003)
0.000

(0.001)
0.211

(0.097)
Systematic Risk 0.033

(0.016)
0.042

(0.020)
0.010

(0.008)
0.007

(0.005)
0.010

(0.003)
0.102

(0.046)
Idiosyncratic Risk 0.280

(0.107)
0.037

(0.018)
0.002

(0.001)
0.001

(0.001)
0.001

(0.001)
0.321

(0.123)
Pure JTD Risk 0.227

(0.111)
0.034

(0.018)
0.002

(0.001)
0.001

(0.000)
0.001

(0.001)
0.265

(0.123)
Correlation Risk 0.033

(0.044)
0.034

(0.050)
0.010

(0.014)
0.007

(0.011)
0.008

(0.021)
0.092

(0.135)
Sum 0.770

(0.089)
0.157

(0.048)
0.027

(0.022)
0.018

(0.014)
0.020

(0.018)
0.992

(0.014)

Table 4: Attribution of risk-neutral expected portfolio losses to tranches and sources of risk. En-

try (i, j) is the fraction of risk-neutral expected portfolio losses that is compensation of risk source i

to tranche j. Data are sample averages for the 5-year CDX North-America Investment-Grade index

between September 2004 and November 2006. Sample standard deviations are given parenthetically.

Remark 5 In an analogous manner, such a decomposition can be achieved for other
credit derivatives, like CDS contracts or first-to-default baskets.

Remark 6 Since the number of defaults in our sample period (September 2004 to
November 2006) was unusually low by historical standards, the contribution of expected
losses to tranches spreads is likely underestimated in Figure 1 and Table 4. It would be
desirable to repeat our analysis for a period that covers a full economic cycle, as soon
as these data become available.
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7.4 Tranche Vs. CDS Risk Characteristics

Coval, Jurek, and Stafford (2007) argue that certain structured finance instruments,
such as a senior CDO tranche, offer far less compensation than alternative pay-off pro-
files, such as a short position in a 50% out-of-the-money put option on the S&P500
index. They argue that this mispricing is due to the tendency of rating agencies to
pay attention only to expected losses when assigning ratings, but not to in what state
of the economy these losses are going to occur. Under this presumption, issuing CDO
tranches emerges as a mechanism for exploiting investors who solely rely on ratings for
investment decisions.

To examine this point further, Table 5 provides the credit spread decomposition on
November 1, 2006, for (i) the senior mezzanine tranche (10%-15%) of the 5-year CDX
North-America Investment-Grade Index and (ii) a 5-year CDS contract for Wal-Mart
Stores, Inc., which had a AA credit rating on this particular date. With a spread of 7.0
and 7.7 basis points, respectively, the implied risk-neutral probability of a loss to the
seller of protection is extremely low for these two credit derivatives. The first row in Table
5 shows that the fraction of the credit spread that is compensation for expected losses,
is about twice as high for the CDS contract compared to the CDX tranche contract.25

In other words, for a given amount of expected losses, a seller of protection for a senior
mezzanine CDX tranche can get an expected return that is roughly twice as high as those
of a seller of protection for a CDS contract with similar pay-off profile. Hence, we do not
find evidence that investors are fully oblivious about the differences in the risks between
structured and single-name credit products. Further research in this area is required, to
asses whether investors are at least partially oblivious about these differences, as argued
by Coval, Jurek, and Stafford (2007).

CDX: Senior Mezzanine Tranche CDS: Wal-Mart Stores, Inc.
Expected Losses 0.005 0.010
Systematic Risk 0.355 0.154
Idiosyncratic Risk 0.042 0.137
Pure JTD Risk 0.040 0.451
Correlation Risk 0.558 0.248

Table 5: Fraction of spread that is compensation for different sources of risk. Data are for November

1, 2006, for (i) the senior mezzanine tranche (10% - 15%) of the 5-year CDX North-America Investment-

Grade Index and (ii) the 5-year CDS spread of Wal-Mart Stores, Inc.

25A similar relationship seems to hold for other highly rated issuers in the CDX portfolio. Of course,
these results depend on a range of modeling assumption.
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8 Conclusion

The emphasis of this paper has been two-fold. First, we conducted an empirical analysis
of an extensive dataset of CDS, credit index, and credit tranche spreads between Septem-
ber 2004 and November 2006. To these data, we fitted an intensity-based model for the
joint behavior of corporate default times, along the lines of Duffie and Gârleanu (2001),
Mortensen (2006), and Eckner (2009). We found that the largest 5-year CDX.NA.IG
tranche pricing errors occurred shortly after the introduction of the CDX index and
tranche contracts, but that these discrepancies largely disappeared within a couple of
months, either reflecting an evolution towards a more efficient market for structured
credit derivatives, or more homogeneity in the models applied in industry practice.
However, this downward trend in tranche pricing errors was interrupted by a sharp in-
crease around May 2005, an episode in the credit market that is now commonly referred
to as the ”GM downgrade”, or the ”correlation crunch”.

Second, we introduced a joint model for physical and risk-neutral default intensities,
which we fitted to the time series of credit-default-swap, credit index, and credit tranche
spreads between September 2004 and November 2006, as well as to the physical default
intensity output from Duffie, Saita, and Wang (2007), and Duffie, Eckner, Horel, and
Saita (2009). We presented a decomposition of risk-neutral expected portfolio losses
into compensation for different sources of risks, and attributed these components to
individual tranches. For our sample period we found that investors in the CDX first-loss
tranche on average bear about 93.3% of the expected losses on the underlying portfolio of
corporate debt, and receive about 77.0% of the total compensation for bearing portfolio
losses. On the other hand, investors in the senior tranche, on average, bear about
0.2% of expected default losses on the underlying portfolio, and receive about 2% of the
total compensation. In terms of the ratio, on average, of compensation rate per unit of
expected loss, the first-loss piece carries a risk premium of 3.9, whereas the most senior
tranches offer a risk premium of about 50. This extreme difference in risk premia is
natural given that the most senior tranches bear losses only when there is a significant
”meltdown” in corporate performance.

Although Coval, Jurek, and Stafford (2007) argued that investors in senior CDO
tranches underprice systematic risks by solely relying on credit ratings for the purpose
of making investment decisions, we found that investors are reasonably aware about the
differences in the risks between structured and single-name credit products. However, in
our framework we cannot preclude that investors are at least partially oblivious about
these differences, and further research in this area would be desirable.

Finally, we broke down the compensation for bearing default risk into several com-
ponents, namely compensation for actual expected losses, systematic risk, firm-specific
risk, correlation risk, and pure jump-to-default (JTD) risk. We showed that various
tranches have different rates of compensation per unit of expected loss because they
carry these various types of risks in different proportions to each other. For our sample
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period, the equity tranche is allocated 81.7% of the total compensation for firm-specific
risk in the underlying portfolio of debt, but carries only 32.0% of the total compensation
for systematic risk. The senior tranche, on the other hand, is allocated only 0.2% of
the total compensation for firm-specific risk, but carries a relatively large fraction, 9.9%,
of the total compensation for systematic risk. We hope that this breakdown will prove
valuable to investors in single-name and structured credit products, who would like to
better understand the types of risks to which they are exposed to, and to quantify the
extent to which they are being compensated for these risks.
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Appendices

A Cox Proportional Hazards Model for λP

Using 25 years of US corporate default history on 2,793 companies, Duffie, Saita, and
Wang (2007) and Duffie, Eckner, Horel, and Saita (2009) estimated a Cox proportional
hazards model for physical default intensities. The default intensity of firm i at time t
is given by

λP
it = eβ·Wit,

where β is a parameter vector, and Wit a vector of firm-specific and macroeconomic
covariates. The covariates are (i) distance-to-default, which is a volatility-adjusted mea-
sure of leverage, (ii) the firm’s trailing 1-year stock return, (iii) the 3-month Treasury
bill rate, and (iv) the trailing 1-year return on the S&P 500 index. See Duffie, Saita,
and Wang (2007) and Duffie, Eckner, Horel, and Saita (2009) for a detailed description
of the covariates and the maximum likelihood estimate of the parameter vector β. Not
surprisingly, distance-to-default is the most influential covariate for determining default
intensities, but the other covariates are statistically and economically significant as well.

B Equivalent Martingale Measure Conditions

This section provides technical conditions for the dynamics of λP under P, and λQ under
Q, that ensure that Q is indeed an equivalent martingale measure for P. Standard
references on equivalent martingale measures and risk-neutral pricing include Harrison
and Kreps (1979) for a discrete time setting, Harrison and Pliska (1981) for the Brownian
motion setting, Brémaud (1981) for point processes, Dai and Singleton (2000) for the
completely affine market price of risk specification, and Cheridito, Filipovic, and Kimmel
(2005) and Cheridito, Filipovic, and Yor (2005) for more general affine processes and
changes of measure.

In the framework of Section 6, physical and risk-neutral default intensities are given
by

λQ
it = Xit + aiYt

λP
it = λQ

it/(1 + ηJTD
it ),

for 1 ≤ i ≤ m, where the jump-to-default risk premium ηJTD
i can represent compensation

for pure JTD risk and for correlation risk, see decomposition (30). To simplify notation,
let Z = (Z1, . . . , Zm+1) = (X1, . . .Xm, Y ) denote the vector of stochastic processes
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driving default intensities. The dynamics of Zj are given by

dZjt = (κ
P,(Zj)
0 + κ

P,(Zj)
1 Zjt) dt + σZj

√
Zjt dB

P,(Zj)
t + dJ

P,(Zj)
t

dZjt = (κ
Q,(Zj)
0 + κ

Q,(Zj)
1 Zjt) dt + σZj

√
Zjt dB

Q,(Zj)
t + dJ

Q,(Zj)
t .

(31)

Under P, BP,(Zj) are independent Brownian motions, and JP,(Zj) are independent com-
pound Poisson processes with jump intensities lP,(Zj) and exponentially distributed jumps
with mean µP,(Zj). Under Q, BQ,(Zj) are independent Brownian motions, and JQ,(Zj) are
independent compound Poisson processes with jump intensities lQ,(Zj) and exponentially
distributed jumps with mean µQ,(Zj). The completely affine risk premia specification
imposes the parameter constraints, for each j,

κ
P,(Zj)
0 = κ

Q,(Zj)
0 .

We next show that the density (Radon-Nikodym derivative)

Λt = E

(
dQ

dP
| Ft

)

can be written as a product of factors representing (i) changes in the drift of the m + 1
Brownian motions, (ii) changes in the m+1 jump intensities and jump size distributions,
and (iii) scaling of the m intensities λP

i by one plus the jump-to-default risk premium.
Specifically,

Λt =

(
m+1∏

j=1

Λ
(1)
jt

)(
m+1∏

j=1

Λ
(2)
jt

)(
m∏

i=1

Λ
(3)
it

)
(32)

=

(
dQ̃

dP

)

t

(
dQ̂

dQ̃

)

t

(
dQ

dQ̂

)

t

.

The first two factors in (32) represent the change in dynamics of Zj under P to Zj under
Q, while the last term reflects the change from λP

i under Q to λQ
i under Q. The remainder

of this Appendix provides technical conditions for (32) to define an arbitrage-free pricing
measure Q equivalent to P.

The following proposition governs the drift change of the stochastic processes Zj.
See Dai and Singleton (2000) for details.

Proposition 2 Fix a time horizon T > 0. Assume that, for each j,

κ
P,(Zj)
0 = κ

Q,(Zj)
0 .

Define the market price of (diffusive) risk for Zj as

ηMPR(Diff) (Zjt) =
κ

Q,(Zj)
1 − κ

P,(Zj)
1

σZj

√
Zjt.
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Then Q̃T , defined by

E

(
dQ̃T

dP
| Ft

)
=

m+1∏

j=1

exp

(
−
∫ t

0

ηMPR(Diff) (Zjs) dBP,(Zj)
s − 1

2

∫ t

0

[
ηMPR(Diff) (Zjs)

]2
ds

)
,

is a probability measure equivalent to P. Moreover, under Q̃T the dynamics of Zj for

1 ≤ j ≤ m+1 are the same as under P except that the mean-reversion coefficient κ
P,(Zj)
1

in (31) is replaced by κ
Q,(Zj)
1 .

The following proposition governs the change in the jump intensity and jump size
distribution of the stochastic processes Z1, . . . , Zm+1. See Cheridito, Filipovic, and Yor
(2005) for a similar formulation.

Proposition 3 Fix a time horizon T > 0. Let νP
j (z, ·) and νQ

j (z, ·) denote the jump size
distribution of Zj under P and Q, respectively. Assume that the jump intensities under
P and Q are bounded away from zero and bounded above, that is

K1 < lP,(Zj) < K1

K2 < lQ,(Zj) < K2

for some positive constants K1 and K2. Define

φj (z, ζ) =
νQ

j (z, ζ)

νP
j (z, ζ)

lQ,(Zj)

lP,(Zj)

and

γj (z, ζ) = φj (z, ζ) log φj (z, ζ) − φj (z, ζ) + 1.

Assume that, for some finite constant K3,
∫ ∞

0

γj (z, ζ) lP,(Zj)νP
j (z, dζ) < K3 (33)

for 1 ≤ j ≤ m + 1. Then Q̂T , defined by

E

(
dQ̂T

dQ̃T

| Ft

)
=

m+1∏

j=1

exp

(∫ t

0

∫

R

γj (z, ζ) lP,(Zj)νP
j (Zjs, dζ) ds

)

is a probability measure equivalent to Q̃T . Moreover, under Q̂T the dynamics of Zj for
1 ≤ j ≤ m + 1 are the same as under Q̃T , except that the jump intensity and jump size
distribution are now given by lQ,(Zj) and νQ

j (z, ·), respectively.
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Remark 7 In the case of exponentially distributed jumps and constant jump intensities

φj (z, ζ) = 1{ζ≥z}
lQ,(Zj)

lP,(Zj)

µP,(Zj)

µQ,(Zj)
exp

((
1

µP,(Zj)
− 1

µQ,(Zj)

)
(ζ − z)

)
.

Hence (33) is satisfied if lP,(Zj), lQ,(Zj), µP,(Zj) and µQ,(Zj) are positive.

Propositions 2 and 3 govern the technical conditions for the change in dynamics of
Zj (and hence also λP

i ) under P to the dynamics under Q. The last step is a scaling of
λP

i by one plus the jump-to-default risk premium ηJTD
i . Note that the Q-dynamics of

the physical default intensity λP
i and of the jump-to-default risk premium ηJTD

i are not
directly observable from market data (as opposed to historical default data or CDS and
tranche spreads). Only the Q-dynamics of the product

λP
i

(
1 + ηJTD

i

)
= λQ

i

are observable, namely via the prices of various credit derivative contracts. Since the
Q-dynamics of λP

i and ηJTD
i are not separately identifiable in our framework, and we

make the following assumption.

Assumption 2 The Q-dynamics of ηJTD
i for 1 ≤ i ≤ m are the same as the P-dynamics.

That is, there is no risk premium associated with the evolution of jump-to-default risk
premium over time.

We can now turn to the last step in the change of measure from P to Q. For details
see Brémaud (1981) or Duffie (2001), Proposition F.5.

Proposition 4 Fix a time horizon T > 0. Assume that (1 + ηJTD
i ) is a strictly positive

and predictable process with
∫ T

0

(
1 + ηJTD

it

)
λP

itdt < ∞ Q̂T − almost surely.

Further assume that the local martingales

Λ
(3)
it = exp

(
−
∫ t

0

ηJTD
is λP

isds

)(
1{τ i≤t}

(
1 + ηJTD

i,τ i

)
+ 1{τ i>t}

)

are in fact Q̂T−martingales for 1 ≤ i ≤ m and 0 ≤ t ≤ T . Then the probability measure
QT , defined by

E

(
dQT

dQ̂T

| Ft

)
=

m∏

i=1

Λ
(3)
it

is equivalent to Q̂T . Moreover, the dynamics of λQ
i ≡ λP

i η
JTD
i under QT are the same as

that of Xi + aiY under QT .
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The following theorem combines the above propositions and assumptions.

Theorem 5 Fix a time horizon T > 0. Suppose the conditions in Proposition 2, 3 and 4
are satisfied and that Assumption 2 holds. Then (Λt : 0 ≤ t ≤ T ), with Λt given by (32) ,
is a strictly positive Ft−martingale under P, and ΛT is the Radon-Nikodym derivative
of a probability measure QT equivalent to P.

For 0 ≤ t ≤ s ≤ T , the unique arbitrage-free price at time t for a security that pays
one monetary unit at time s if τ i > s (and zero otherwise) is

Vt = EQT

(
e−

∫ s

t
rudu1{τi>s} | Ft

)
. (34)

Equivalently,

Ṽt = Pte
∫ t

0
rudu

is a martingale on (Ω,FT , (Ft : 0 ≤ t ≤ T ) , QT ).

Proof Proposition 2 implies that Q̃T is equivalent to P. Proposition 3 implies that
Q̂T is equivalent to Q̃T . Proposition 4 implies that QT is equivalent to Q̂T . We therefore
also have that QT is equivalent to P and that ΛT > 0 almost surely under P. Since

Λt = E

(
dQT

dP
| Ft

)
= E (ΛT | Ft) ,

it follows that Λt > 0 almost surely under P. The tower property implies that (Λt : 0 ≤ t ≤ T )
is an Ft−martingale under P. Finally, the security pricing formula (34) follows form the
general theory of arbitrage-free pricing, see for example Section 6 in Duffie (2001).

�

Note that it is easy to generalize (34) to the pricing of securities with more compli-
cated pay-off structures, see for example Section 6L in Duffie (2001).

C MLE of Physical Default Intensity Dynamics

This section provides details about Step 4 of Algorithm 2, which involves the estimation
of the parameters governing physical default intensity dynamics.

Recall that {Xit : 1 ≤ i ≤ m, 0 ≤ t ≤ T} and {Yt : 0 ≤ t ≤ T} are outputs of the fit-
ting procedure in Section 4.2. Inference about the parameters governing the P−dynamics
of Xi and Y therefore amounts to estimating the parameters of a discretely observed
basic AJD. For such a process Z with parameters η = (κ, θ, σ, l, µ), let pbAJD (. | z, η, s, t)
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denote its transition density between times s and time t for Zs = z. Given a set of
observations {Zt1 , . . . , ZtM}, the likelihood function Lη is

Lη (Zt1 , . . . , Ztk) = p (Zt1 | η)

M∏

k=2

pbAJD

(
Ztk |Ztk−1

, η, tk−1, tk
)
, (35)

where p (Zt1 | η) the initial distribution of the process. We base inference about the basic
AJD parameters on the time-discretization

∆Zj,tk = Zj,tk − Zj,tk−1
= κ

(
θ − Ztk−1

)
∆tk + σ

√
Ztk−1

∆tkεtk + ∆Jtk , (36)

where ∆tk = tk − tk−1, εtk are independent standard normal random variables, and ∆Jtk

are independent random variables with distribution

P (∆Jtk ∈ [z, z + dξ)) =

{
exp (−l∆tk) , for z = 0
(1 − exp (−l∆tk))µ exp (−µz) dξ, for z > 0

The discretization (36) assumes that at most one jump can occur in each time interval
(tk−1, tk]. In simulation studies, Eraker (2001) and Eraker, Johannes, and Polson (2003)
show that when using daily or monthly data and parameters values similar to ours, the
discretization bias due to using (36) is negligible.

Since X1, . . . , Xm, Y are independent, parameter inference via (35) can be conducted
separately for each process, for example, via Newton-Raphson maximization of the like-
lihood function. Nevertheless, it is easy to impose joint constraints on the parameters
if desired.
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