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Frailty Correlated Default
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ABSTRACT

The probability of extreme default losses on portfolios of U.S. corporate debt is much
greater than would be estimated under the standard assumption that default correla-
tion arises only from exposure to observable risk factors. At the high confidence levels
at which bank loan portfolio and collateralized debt obligation (CDO) default losses
are typically measured for economic capital and rating purposes, conventionally based
loss estimates are downward biased by a full order of magnitude on test portfolios.
Our estimates are based on U.S. public nonfinancial firms between 1979 and 2004. We
find strong evidence for the presence of common latent factors, even when controlling
for observable factors that provide the most accurate available model of firm-by-firm
default probabilities.

THIS PAPER PROVIDES a more realistic assessment of the risk of large default
losses on portfolios of U.S. corporate debt than had been available with prior
methodologies. At the high confidence levels at which portfolio default losses
are typically estimated for meeting bank capital requirements and rating col-
lateralized debt obligations (CDOs), our empirical results indicate that conven-
tional estimators are downward biased by a full order of magnitude on typical
test portfolios. Our estimates are based on portfolios of U.S. corporate debt ex-
isting between 1979 and 2004. For estimating high-quantile portfolio losses,
conventional methodologies suffer from their failure to correct for a significant
downward omitted variable bias. We find strong evidence that firms are ex-
posed to a common dynamic latent factor driving default, even after controlling
for observable factors that on their own provide the most accurate available
model of firm-by-firm default probabilities. Both uncertainty about the current
level of this variable, as well as joint exposure to future movements of this
variable, cause a substantial increase in the conditional probability of large
portfolio default losses.

A conventional portfolio loss risk model assumes that borrower-level condi-
tional default probabilities depend on measured firm-specific or marketwide
factors. Portfolio loss distributions are typically based on the correlating
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influence of such observable factors. For example, rating agencies typically esti-
mate the probability of losses to senior tranches of CDOs, which are intended to
occur only when the underlying portfolio losses exceed a high confidence level,
by relying on the observable credit ratings of the underlying collateral debt in-
struments. Modeled co-movement of the ratings of the borrowers represented in
the collateral pool is intended to capture default correlation and the tails of the
total loss distribution. However, if the underlying borrowers are commonly ex-
posed to important risk factors whose effect is not captured by co-movements of
borrower ratings, then the portfolio loss distribution will be poorly estimated.
This is not merely an issue of estimation noise; a failure to include risk fac-
tors that commonly increase and decrease borrowers’ default probabilities will
result in a downward biased estimate of tail losses. For instance, in order to
receive a triple-A rating, a CDO is typically required to sustain little or no
losses at a confidence level such as 99%. Although any model of corporate debt
portfolio losses cannot accurately measure such extreme quantiles with the lim-
ited available historical data, our model of tail losses avoids a large, downward
omitted variable bias, and survives goodness-of-fit tests associated with large
portfolio losses.

Whenever it is possible to identify and measure new significant risk fac-
tors, they should be included in the model. We do not claim to have identified
and included all relevant observable risk factors. Although our observable risk
factors include firm-level and macroeconomic variables leading to higher accu-
racy ratios for out-of-sample default prediction than those offered by any other
published model, further research will undoubtedly uncover new significant
observable risk factors that should be included. We discuss some proposed in-
clusions later in this paper.1 It is inevitable, however, that not all relevant risk
factors that are potentially observable by the econometrician will end up being
included. There is also a potential for important risk factors that are simply not
observable. A downward bias in tail-loss estimates is thus inevitable without
some form of bias correction. Our approach is to directly allow for unobserved
risk factors whose time-series behavior and whose posterior conditional distri-
bution can both be estimated from the available data by maximum likelihood
estimation.

For example, subprime mortgage debt portfolios recently suffered losses in
excess of the high confidence levels that were estimated by rating agencies.
The losses associated with this debacle that have been reported by financial
institutions total approximately $800 billion as of this writing, and are still ac-
cumulating. An example of an important factor that was not included in most
mortgage portfolio default loss models is the degree to which borrowers and
mortgage brokers provided proper documentation of borrowers’ credit qualities.
With hindsight, more teams responsible for designing, rating, intermediating,
and investing in subprime CDOs might have done better by allowing for the
possibility that the difference between actual and documented credit qualities
would turn out to be much higher than expected, or much lower than expected,

1 New work by Lando and Nielsen (2008) suggests additional helpful covariates.
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in a manner that is correlated across the pool of borrowers. Incorporating this
additional source of uncertainty would have resulted in higher prices for CDO
“first-loss” equity tranches (a convexity effect). Senior CDOs would have been
designed with more conservative over-collateralization, or alternatively would
have had lower ratings and lower prices (a concavity effect), on top of any re-
lated risk premia effects. Accordingly, more modelers could have improved their
models by adding proxies for this moral hazard effect. It seems optimistic to be-
lieve that they were prepared to do so, however, for despite the clear incentives,
many apparently did not. This suggests that it is not easy, ex ante, to include
all important default covariates, and further, that the next event of extreme
portfolio loss could be based on a different omitted variable. It therefore seems
prudent, going forward, to allow for missing default covariates when estimating
tail losses on debt portfolios.

As a motivating instance of missing risk factors in the corporate debt arena
on which we focus, the defaults of Enron and WorldCom may have revealed
faulty accounting practices that could have been in use at other firms, and
thus may have had an impact on the conditional default probabilities of other
firms, and therefore on portfolio losses. The basic idea of our methodology is an
application of Bayes’s Rule to update the posterior distribution of unobserved
risk factors whenever defaults arrive with a timing that is more or less clus-
tered than would be expected based on the observable risk factors alone. In
the statistics literature on event forecasting, the effect of such an unobserved
covariate is called “frailty.” In the prior statistics literature, frailty covariates
are assumed to be static. It would be unreasonable to assume that latent risk
factors influencing corporate default are static over our 25-year data period,
so we extend the prior statistical methodology so as to allow a frailty covari-
ate to vary over time according to an autoregressive time-series specification.
We use Markov Chain Monte Carlo (MCMC) methods to perform maximum
likelihood estimation and to filter for the conditional distribution of the frailty
process.

While our empirical results address the arrival of default events, our method-
ology can be applied in other settings. Recently, for instance, Chernobai, Jorion,
and Yu (2008) adopted our methodology to estimate a model of operational risk
events. Our model could also be used to treat the implications of missing covari-
ates for mortgage pre-payments, employment events, mergers and acquisitions,
and other event-based settings in which there are time-varying latent variables.

The remainder of the paper is organized as follows. Section I gives an overview
of our modeling approach and results. Section II places our work in the context
of the related literature and clarifies our incremental contribution. Section III
specifies the precise probabilistic model for the joint distribution of default
times. Section IV describes our data sources, provides the fitted model, and
summarizes some of the implications of the fitted model for the distribution of
losses on portfolios of U.S. corporate debt. Section V examines the fit of the model
and addresses some potential sources of misspecification, providing robustness
checks. Section VI concludes. Appendices provide some key technical informa-
tion, including our estimation methodology, which is based on a combination
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of the Monte Carlo expectations maximization (EM) algorithm and the Gibbs
sampler.

I. Modeling Approach and Results

In order to further motivate our approach and summarize our main empiri-
cal results, we briefly outline our specification here, and later provide details.
Our objective is to estimate the probability distribution of the number of de-
faults among m given firms over any prediction horizon. For a given firm i,
our model includes a vector Uit of observable default prediction covariates that
are specific to firm i. These variables include the firm’s “distance to default,”
a widely followed volatility-corrected leverage measure whose construction is
reviewed later in this paper, as well as the firm’s trailing stock return, an
important auxiliary covariate suggested by Shumway (2001). Allowing for un-
observed heterogeneity, we include an unobservable firm-specific covariate Zi.
We also include a vector Vt of observable macroeconomic covariates, including
interest rates and marketwide stock returns. In robustness checks, we explore
alternative and additional choices for observable macro-covariates. Finally, we
include an unobservable macroeconomic covariate Yt whose “frailty” influence
on portfolio default losses is our main focus.

If all of these covariates were observable, our model specification would imply
that the conditional mean arrival rate of default of firm i at time t is

λit = exp(a + b · Vt + c · Uit + Yt + Zi),

for coefficients a, b, and c to be estimated. If all covariates were observable, this
would be a standard proportional hazards specification. The conditional mean
arrival rate λit is also known as a default intensity. For example, a constant an-
nual intensity of 0.01 means Poisson default arrival with an annual probability
of default of 1 − e−0.01 	 0.01.

Because Yt and Zi are not observable, their posterior probability distributions
are estimated from the available information set Ft , which includes the prior
history of the observable covariates {(Us, Vs) : s ≤ t}, where Ut = (U1t, . . . , Umt),
and also includes previous observations of the periods of survival and times of
defaults of all m firms.

Because public firm defaults are relatively rare, we rely on 25 years of data.
We include all 2,793 U.S. public nonfinancial firms for which we were able to
obtain matching data from the several data sets on which we rely. Our data,
described in Section IV.A, cover over 400,000 firm-months. We specify an au-
toregressive Gaussian time-series model for (Ut, Vt, Yt) that will be detailed
later. Because Yt is unobservable, we find that it is relatively difficult to tie
down its mean reversion rate with the available data, but the data do indicate
that Y has substantial time-series volatility, increasing the proportional volatil-
ity of λit by about 40% above and beyond that induced by time-series variation
in Uit and Vt.

Our main focus is the conditional probability distribution of portfolio default
losses given the information actually available at a given time. For example,
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consider the portfolio of the 1,813 firms from our data set that were active at
the beginning of 1998. For this portfolio, we estimate the probability distribu-
tion of the total number of defaulting firms over the subsequent 5 years. This
distribution can be calculated from our estimates of the default intensity co-
efficients α, β, and γ ; our estimates of the time-series parameters governing
the joint dynamics of (Ut, Vt, Yt); and the estimated posterior distribution of Yt
and Z1, . . . , Zm given the information Ft available at the beginning of this 5-
year period. The detailed estimation methodology is provided later in the paper.
The 95th and 99th percentiles of the estimated distribution are 216 and 265 de-
faults, respectively. The actual number of defaults during this period turned out
to be 195, slightly below the 91% confidence level of the estimated distribution.
With hindsight, we know that 2001 to 2002 was a period of particularly severe
corporate defaults. In Section IV, we show that a failure to allow for a frailty
effect would have resulted in a severe downward bias of the tail quantiles of the
portfolio loss distribution, to the point that one would have incorrectly assigned
negligible probability to the event that the number of defaults actually realized
would have been reached or exceeded.

As a robustness check, we provide a Bayesian analysis of the effect of a
joint prior distribution for the mean reversion rate and volatility of Yt on the
posterior distribution of these parameters and on the posterior distribution of
portfolio default losses. We find that this parameter uncertainty causes addi-
tional “fattening” of the tail of the portfolio loss distribution, notably at extreme
quantiles.

More generally, we provide tests of the fit of frailty-based tail quantiles that
support our model specification against the alternative of a no-frailty model. We
show that there are two important potential channels for the effect of the frailty
variable on portfolio loss distributions. First, as with an observable macrovari-
able, the frailty covariate causes common upward and downward adjustments
of firm-level conditional default intensities over time. This causes large port-
folio losses to be more likely than would be the case with a model that does
not include this additional source of default intensity covariation. Second, be-
cause the frailty covariate is not observable, uncertainty about the current
level of Yt at the beginning of the forecast period is an additional source of
correlation across firms of the events of future defaults. This second effect on
the portfolio loss distribution would be important even if there were certain
to be no future changes in this frailty covariate. In an illustrative example,
we show that these two channels of influence of the frailty process Y have
comparably large impacts on the estimated tail quantiles of the portfolio loss
distribution.

After controlling for observable covariates, we find that defaults were persis-
tently higher than expected during lengthy periods of time, for example, 1986
to 1991, and persistently lower in others, for example, during the mid-1990s.
From trough to peak, the estimated impact of the frailty covariate Yt on the
average default rate of U.S. corporations during 1980–2004 is roughly a factor
of two or more. As a robustness check, and as an example of the impact on the
magnitude of the frailty effect of adding an observable factor, we reestimate
the model including as an additional observable macro-covariate the trailing
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average realized rate of default,2 which could proxy for an important factor that
had been omitted from the base-case model. We show that this trailing default
rate covariate is statistically significant, but that there remains an important
role for frailty in capturing the tails of portfolio loss distributions.

II. Related Literature

A standard structural model of default timing assumes that a corporation
defaults when its assets drop to a sufficiently low level relative to its liabilities.
For example, the models of Black and Scholes (1973), Merton (1974), Fisher,
Heinkel, and Zechner (1989), and Leland (1994) take the asset process to be
a geometric Brownian motion. In these models, a firm’s conditional default
probability is completely determined by its distance to default, which is the
number of standard deviations of annual asset growth by which the asset level
(or expected asset level at a given time horizon) exceeds the firm’s liabilities.
An estimate of this default covariate, using market equity data and accounting
data for liabilities, has been adopted in industry practice by Moody’s Analytics,
a leading provider of estimates of default probabilities for essentially all pub-
licly traded firms.3 Based on this theoretical foundation, we include distance
to default as a covariate.

In the context of a standard structural default model of this type, Duffie and
Lando (2001) show that if distance to default cannot be accurately measured,
then a filtering problem arises, and the resulting default intensity depends on
the measured distance to default and on other covariates, both firm-specific and
macroeconomic, that may reveal additional information about the firm’s condi-
tion. If, across firms, there is correlation in the observation noises of the various
firms’ distances to default, then there is frailty. For reasons of tractability, we
have chosen a reduced-form specification of frailty.

Altman (1968) and Beaver (1968) are among the first to estimate reduced-
form statistical models of the likelihood of default of a firm within one account-
ing period, using accounting data.4 Although the voluminous subsequent em-
pirical literature addressing the statistical modeling of default probabilities has
typically not allowed for unobserved covariates affecting default probabilities,
the topic of hidden sources of default correlation has recently received some at-
tention. Collin-Dufresne, Goldstein, and Helwege (2003) and Zhang and Jorion

2 We are grateful to a referee for suggesting this.
3 See Crosbie and Bohn (2002) and Kealhofer (2003).
4 Early in the empirical literature on default time distributions is the work of Lane, Looney, and

Wansley (1986) on bank default prediction, using time-independent covariates. Lee and Urrutia
(1996) used a duration model based on a Weibull distribution of default times. Duration models
based on time-varying covariates include those of McDonald and Van de Gucht (1999), in a model
of the timing of high-yield bond defaults and call exercises. Related duration analysis by Shumway
(2001), Kavvathas (2001), Chava and Jarrow (2004), and Hillegeist et al. (2004) predict bankruptcy.
Shumway (2001) uses a discrete duration model with time-dependent covariates. Duffie, Saita,
and Wang (2007) provide maximum likelihood estimates of term structures of default probabilities
by using a joint model for default intensities and the dynamics of the underlying time-varying
covariates.
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(2007) find that a major credit event at one firm is associated with significant
increases in the credit spreads of other firms, consistent with the existence of
a frailty effect for actual or risk-neutral default probabilities. Collin-Dufresne,
Goldstein, and Huggonier (2004), Giesecke (2004), and Schönbucher (2003) ex-
plore learning from default interpretations, based on the expected effect of un-
observable covariates. Yu (2005) finds empirical evidence that, other things
equal, a reduction in the measured precision of accounting variables is asso-
ciated with a widening of credit spreads. Das et al. (2007), using roughly the
same data studied here, provide evidence that defaults are significantly more
correlated than would be suggested by the assumption that default risk is cap-
tured by the observable covariates. They do not, however, estimate a model with
unobserved covariates.

Here, we depart from traditional duration-based specifications of default pre-
diction, such as those of Couderc and Renault (2004), Shumway (2001), and
Duffie, Saita, and Wang (2007), by allowing for dynamic unobserved covari-
ates. Independent of our work, and with a similar thrust, Delloy, Fermanian,
and Sbai (2005) and Koopman, Lucas, and Monteiro (2008) estimate dynamic
frailty models of rating transitions. They suppose that the only observable firm-
specific default covariate is an agency credit rating, and that all intensities of
downgrades from one rating to the next depend on a common unobservable
factor. Because credit ratings are incomplete and lagging indicators of credit
quality, as shown, for example, by Lando and Skødeberg (2002), one would ex-
pect to find substantial frailty in ratings-based models such as these. As shown
by Duffie, Saita, and Wang (2007), who estimate a model without frailty, the
observable covariates that we propose offer substantially better out-of-sample
default prediction than does prediction based on credit ratings. Even with the
benefit of these observable covariates, however, in this paper we explicitly in-
corporate the effect of additional unincluded sources of default correlation and
show that they have statistically and economically significant implications for
the tails of portfolio default loss distributions.

III. A Dynamic Frailty Model

The introduction has given a basic outline of our model. This section pro-
vides a precise specification of the joint probability distribution of covariates
and default times. We fix a probability space (�, F , P) and an information fil-
tration {Gt : t ≥ 0}. For a given borrower whose default time is τ, we say that a
nonnegative progressively measurable process λ is the default intensity of the
borrower if, as of time t, the borrower has not yet defaulted; λt is the conditional
mean arrival rate of default, measured in events per unit of time.5

We suppose that all firms’ default intensities at time t depend on a Markov
state vector Xt of firm-specific and macroeconomic covariates. We suppose, how-
ever, that Xt is only partially observable to the econometrician. With complete
observation of Xt, the default intensity of firm i at time t would be of the form

5 Precisely, a martingale is defined by 1τ≤t − ∫ t
0 λs1τ>s ds.



2096 The Journal of Finance R©

λit = 
(Si(Xt), θ ), where θ is a parameter vector to be estimated and Si(Xt) is
the component of the state vector that is relevant to the default intensity of
firm i.

We assume that, conditional on the path of the underlying state process
X determining default and other exit intensities, the exit times of firms are
the first event times of independent Poisson processes with time-varying in-
tensities determined by the path of X. This “doubly stochastic” assumption
means that, given the path of the state vector process X, the merger and failure
times of different firms are conditionally independent. While this conditional-
independence assumption is traditional for duration models, we depart in an
important way from the traditional setting by assuming that X is not fully
observable to the econometrician. Thus, from the viewpoint of the econome-
trician’s information, defaults are not doubly stochastic, and we cannot use
standard estimation methods.

One may entertain various alternative approaches. For example, there is
the possibility of “contagion,” by which the default of one firm could have a
direct influence on the revenues (or expenses or capital-raising opportunities)
of another firm. In this paper, we examine instead the implications of “frailty,”
by which many firms could be jointly exposed to one or more unobservable risk
factors. We restrict attention for simplicity to a single common frailty factor
and to firm-by-firm idiosyncratic frailty factors, although a richer model and
sufficient data could allow for the estimation of additional frailty factors, for
example, at the sectoral level.

We let Uit be a firm-specific vector of covariates that are observable for firm
i from when it first appears in the data at some time ti until its exit time Ti.
We let Vt denote a vector of macroeconomic variables that are observable at
all times, and let Yt be a vector of unobservable frailty variables. The complete
state vector is then Xt = (U1t, . . . , Umt, Vt, Yt), where m is the total number of
firms in the data set. A time-series model of X, to be described, is determined
by a vector γ of parameters to be estimated.

We let Wit = (1, Uit, Vt) be the vector of observed covariates for company i
(including a constant).6 The last observation time Ti of company i could be
the time of a default or another form of exit, such as a merger or acquisition.
While we take the first appearance time ti to be deterministic, our results are
not affected by allowing ti to be a stopping time under additional technical
conditions.

The econometrician’s information filtration (Ft)0≤t≤T is that generated by the
observed variables

{Vs : 0 ≤ s ≤ t} ∪ {(Dis, Uis) : 1 ≤ i ≤ m, ti ≤ s ≤ min(t, Ti)},
where Di is the default indicator process of company i (which is zero before
default, one afterwards). The complete-information filtration (Gt)0≤t≤T is gen-
erated by the variables in Ft as well as the frailty process {Ys : 0 ≤ s ≤ t}.

6 Because we observe these covariates on a monthly basis but measure default times continu-
ously, we take Wit = Wi,k(t), where k(t) is the time of the most recent month end.
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We assume that λit = 
(Si(Xt), θ ), where Si(Xt) = (Wit, Yt). We take the pro-
portional hazards form


 ((w, y) , θ ) = eβ1w1+···+βnwn+η y (1)

for a parameter vector θ = (β, η, κ) common to all firms, where κ is a parameter
whose role will be defined later.7

Before considering the effect of other exits such as mergers and acquisitions,
the maximum likelihood estimators (MLE) of Ft-conditional survival probabil-
ities, portfolio loss distributions, and related quantities are obtained under the
usual smoothness conditions by treating the MLE of the parameters as though
they are the true parameters (γ , θ ).8 We will also examine the implications of
Bayesian uncertainty regarding certain key parameters.

To further simplify notation, let W = (W1, . . . , Wm) denote the vector of ob-
served covariate processes for all companies, and let D = (D1, . . . , Dm) denote
the vector of default indicators of all companies. If the econometrician were to
be given complete information, Proposition 2 of Duffie, Saita, and Wang (2007)
would imply a likelihood of the data at the parameters (γ , θ ) of the form

L(γ , θ | W , Y , D)

= L(γ | W )L(θ | W , Y , D)

= L(γ | W )
m∏

i=1


e

−
Ti∑

t=ti
λit�t Ti∏

t=ti

[Ditλit�t + (1 − Dit)]


 . (2)

We simplify by supposing that the frailty process Y is independent of the
observable covariate process W. With respect to the econometrician’s limited

7 In the sense of Proposition 4.8.4 of Jacobsen (2006), the econometrician’s default intensity for
firm i is

λ̄it = E(λit |Ft ) = eβ·Wit E
(
eηYt |Ft

)
.

It is not generally true that the conditional probability of survival to a future time T (neglecting
the effect of mergers and other exits) is given by the “usual formula” E(e− ∫ T

t λ̄is ds |Ft ). Rather, for a
firm that has survived to time t, the probability of survival to time T (again neglecting other exits)
is E(e− ∫ T

t λis ds |Ft ). This is justified by the law of iterated expectations and the doubly stochastic
property on the complete-information filtration (Gt ), which implies that the Gt -conditional survival
probability is E(e− ∫ T

t λis ds |Gt ). See Collin-Dufresne, Goldstein, and Huggonier (2004) for another
approach to this calculation.

8 If other exits, for example, due to mergers and acquisitions, are jointly doubly stochastic with
default exits, and other exits have the intensity process µi, then the conditional probability at time
t that firm i will not exit before time T > t is E(e− ∫ T

t (µis+λis ) ds |Ft ). For example, it is impossible for a
firm to default beginning in 2 years if it has already been acquired by another firm within 2 years.



2098 The Journal of Finance R©

filtration (Ft), the likelihood is then

L(γ , θ | W , D) =
∫

L(γ , θ | W , y , D)pY ( y) d y

= L (γ | W )
∫

L(θ | W , y , D)pY ( y) d y

= L (γ | W ) E


 m∏

i=1


e

−
Ti∑

t=ti
λit�t Ti∏

t=ti

[Ditλit�t + (1 − Dit)]




∣∣∣∣∣ W , D


,

(3)

where pY (· ) is the unconditional probability density of the path of the unob-
served frailty process Y. The final expectation of (3) is with respect to that
density.9

Most of our empirical results are properties of the MLE (γ̂ , θ̂ ) for (γ , θ ). Even
when considering other exits such as those due to acquisitions, (γ̂ , θ̂ ) is the full
MLE for (γ , θ ) because we have assumed that all forms of exit are jointly doubly
stochastic on the artificially enlarged information filtration (Gt).

In order to evaluate the expectation in (3), one could simulate sample paths
of the frailty process Y. Since our covariate data are monthly observations
from 1979 to 2004, evaluating (3) by direct simulation would then mean Monte
Carlo integration in a high-dimensional space. This is extremely numerically
intensive by brute-force Monte Carlo, given the overlying search for parameters.
We now turn to a special case of the model that can be feasibly estimated.

We suppose that Y is an Ornstein–Uhlenbeck (OU) process, in that

dYt = −κYt dt + dBt , Y0 = 0, (4)

where B is a standard Brownian motion with respect to (�, F , P, (Gt)), and
where κ is a nonnegative constant, the mean-reversion rate of Y. Without loss of
generality, we have fixed the volatility parameter of the Brownian motion to be
unity because scaling the parameter η, which determines in (1) the dependence
of the default intensities on Yt, plays precisely the same role in the model as
scaling the frailty process Y.

The OU model for the frailty variable Yt could capture the accumulative ef-
fect over time of various different unobserved fundamental common shocks to
default intensities. For example, as suggested in the introduction, a borrower’s
measured credit qualities could be subject to a common source of reporting
noise. While such an accounting failure could be mitigated over time with im-
proved corporate governance and accounting standards, some new form of com-
mon unobserved shift in default intensities could arise, such as the incentive
effects of a change in bankruptcy law that the econometrician failed to consider,

9 For notational simplicity, expression (3) ignores the precise intramonth timing of default, al-
though it was accounted for in the parameter estimation by replacing �t with τi − ti−1 in the case
that company i defaults in the time interval (tt−1, ti].
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or a correlated shift in the liquidity of balance sheets that went unobserved,
and so on. The mean-reversion parameter κ is intended to capture the expected
rate of decay of the cumulative effect of past unobserved shocks to default in-
tensities.

Although an OU process is a reasonable starting model for the frailty pro-
cess, one could allow much richer frailty models. From the Bayesian analysis
reported in Section IV, however, we have found that even our relatively large
data set is too limited to identify much of the time-series properties of frailty.
This is not so surprising, given that the sample paths of the frailty process are
not observed, and given the relatively sparse default data. For the same reason,
we have not attempted to identify sector-specific frailty effects.

The starting value and long-run mean of the OU process Y are taken to be
zero, since any change (of the same magnitude) of these two parameters can
be absorbed into the default intensity intercept coefficient β1. However, we do
lose some generality by taking the initial condition for Y to be deterministic
and to be equal to the long-run mean. An alternative would be to add one or
more additional parameters specifying the initial probability distribution of Y.
We have found that the posterior of Yt tends to be robust to the assumed initial
distribution of Y, for points in time t that are a year or two after the initial date
of our sample.

We estimate the model parameters using a combination of the EM algorithm
and the Gibbs sampler that is described in Appendix A.

IV. Major Empirical Results

This section describes our data, presents the estimated model, and provides
its implications for the distribution of portfolio default losses relative to a model
without frailty.

A. Data

Our data set, drawing elements from Bloomberg, Compustat, CRSP, and
Moody’s, is almost the same as that used to estimate the no-frailty models of
Duffie, Saita, and Wang (2007) and Das et al. (2007). We have slightly improved
the data by using The Directory of Obsolete Securities and the SDC database to
identify additional mergers, defaults, and failures. We have checked that the
few additional defaults and mergers identified through these sources do not
change significantly the results of Duffie, Saita, and Wang (2007). Our data set
contains 402,434 firm-months of data between January 1979 and March 2004.
Because of the manner in which we define defaults, it is appropriate to use data
only up to December 2003. For the total of 2,793 companies in this improved
data set, Table I shows the number of firms in each exit category. Of the to-
tal of 496 defaults, 176 first occurred as bankruptcies, although many of the
“other defaults” eventually led to bankruptcy. We refer the interested reader to
Section 3.1 of Duffie, Saita, and Wang (2007) for an in-depth description of the
construction of the data set and an exact definition of these event types.
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Table I
Number of Firm Exits of Each Type between 1979 and 2004

Exit Type Number

Bankruptcy 176
Other default 320
Merger-acquisition 1,047
Other exits 671
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Figure 1. Yearly number of defaults. The number of defaults in our data set for each year
between 1980 and 2003.

Figure 1 shows the total number of defaults (bankruptcies and other defaults)
in each year. Moody’s 13th annual corporate bond default study10 provides a
detailed exposition of historical default rates for various categories of firms
since 1920.

The model of default intensities estimated in this paper adopts a parsimo-
nious set of observable firm-specific and macroeconomic covariates:

1. Distance to default, a volatility-adjusted measure of leverage. Our method
of construction, based on market equity data and Compustat book liability

10 Moody’s Investor Service, “Historical Default Rates of Corporate Bond Issuers, 1920–1999.”
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data, is that used by Vassalou and Xing (2004), Crosbie and Bohn (2002),
and Hillegeist et al. (2004). Although the conventional approach to mea-
suring distance to default involves some rough approximations, Bharath
and Shumway (2008) provide evidence that default prediction is relatively
robust to varying the proposed measure with some relatively simple al-
ternatives.

2. The firm’s trailing 1-year stock return, a covariate suggested by Shumway
(2001). Although we do not have in mind a particular structural interpre-
tation for this covariate, like Shumway, we find that it offers significant
incremental explanatory power, perhaps as a proxy for some unobserved
factor that has an influence on default risk beyond that of the firm’s mea-
sured distance of default.

3. The 3-month Treasury bill rate, which plays a role in the estimated model
consistent with the effect of a monetary policy that lowers short-term
interest rates when the economy is likely to be performing poorly.

4. The trailing 1-year return on the S&P 500 index. The influence of this
covariate, which is statistically significant but, in the presence of distance
to default, of only moderate economic importance, will be discussed later.

Duffie, Saita, and Wang (2007) give a detailed description of these covariates
and discuss their relative importance in modeling corporate default intensities.
As robustness checks, we examine the influence of GDP growth rates, indus-
trial production growth rates, average BBB–AAA corporate bond yield spreads,
industry average distance to default, and firm size, measured as the logarithm
of the model-implied assets.11 Each of these is found to be at best marginally
significant after controlling for our basic covariates, distance to default, trail-
ing returns of the firm and the S&P 500, and the 3-month Treasury bill rate.
Later in this paper, we also consider the implications of augmenting our list of
macro-covariates with the trailing average default rate, which could proxy for
important missing common covariates. This variable might also capture a di-
rect source of default contagion, in that when a given firm defaults, other firms
that had depended on it as a source of sales or inputs may also be harmed. This
was the case, for example, in the events surrounding the collapse of Penn Cen-
tral in 1970 to 1971. Another example of such a contagion effect is the influence
of the bankruptcy of auto parts manufacturer Delphi in November 2005 on the
survival prospects of General Motors. We do not explore the role of this form of
contagion, which cannot be treated within our modeling framework.

B. The Fitted Model

Table II shows the estimated covariate parameter vector β̂ and frailty pa-
rameters η̂ and κ̂, together with estimates of asymptotic standard errors.

11 Size may be associated with market power, management strategies, or borrowing ability, all of
which may affect the risk of failure. For example, it might be easier for a big firm to renegotiate with
its creditors to postpone the payment of debt, or to raise new funds to pay old debt. In a “too-big-
to-fail” sense, firm size may also negatively influence failure intensity. The statistical significance
of size as a determinant of failure risk has been documented by Shumway (2001). For our data and
our measure of firm size, however, this covariate does not play a statistically significant role.
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Table II
Maximum Likelihood Estimates of Intensity Model Parameters

The frailty volatility is the coefficient η of dependence of the default intensity on the OU frailty
process Y. Estimated asymptotic standard errors are computed using the Hessian matrix of the
expected complete data log likelihood at θ = θ̂ . The mean reversion and volatility parameters are
based on monthly time intervals.

Coefficient Std. Error t-Statistic

Constant −1.029 0.201 −5.1
Distance to default −1.201 0.037 −32.4
Trailing stock return −0.646 0.076 −8.6
3-month T-bill rate −0.255 0.033 −7.8
Trailing S&P 500 return 1.556 0.300 5.2
Latent-factor volatility η 0.125 0.017 7.4
Latent-factor mean reversion κ 0.018 0.004 4.8

Our results show important roles for both firm-specific and macroeconomic
covariates. Distance to default, although a highly significant covariate, does
not on its own determine the default intensity, but does explain a large part of
the variation of default risk across companies and over time. For example, a
negative shock to distance to default by one standard deviation increases the
default intensity by roughly e1.2 − 1 ≈ 230%. The 1-year trailing stock return
covariate proposed by Shumway (2001) has a highly significant impact on de-
fault intensities. Perhaps it is a proxy for firm-specific information that is not
captured by distance to default.12 The coefficient linking the trailing S&P 500
return to a firm’s default intensity is positive at conventional significance levels,
and of the unexpected sign by univariate reasoning. Of course, with multiple
covariates, the sign need not be evidence that a good year in the stock market
is itself bad news for default risk. It could also be the case that, after boom
years in the stock market, a firm’s distance to default overstates its financial
health.

The estimate η̂ = 0.125 of the dependence of the unobservable default in-
tensities on the frailty variable Yt corresponds to a monthly volatility of this
frailty effect of 12.5%, which translates to an annual volatility of 43.3%, which
is highly economically and statistically significant.

Table III reports the intensity parameters of the same model after removing
the role of frailty. The signs, magnitudes, and statistical significance of the
coefficients of the observable covariates are similar to those with frailty, with
the exception of the coefficient on the 3-month Treasury bill rate, which is
smaller without frailty but remains statistically significant.

12 There is also the potential, with the momentum effects documented by Jegadeesh and Titman
(1993) and Jegadeesh and Titman (2001), that trailing return is a forecaster of future distance to
default.
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Table III
Maximum Likelihood Estimates of the Intensity Parameters in the

Model without Frailty
Estimated asymptotic standard errors were computed using the Hessian matrix of the likelihood
function at θ = θ̂ .

Coefficient Std. Error t-Statistic

Constant −2.093 0.121 −17.4
Distance to default −1.200 0.039 −30.8
Trailing stock return −0.681 0.082 −8.3
3-month T-bill rate −0.106 0.034 −3.1
Trailing S&P 500 return 1.481 0.997 1.5

C. The Posterior of the Frailty Path

In order to interpret the model and apply it to the computation of portfolio
loss distributions, we calculate the posterior distribution of the frailty process
Y given the econometrician’s information.

First, we compute the FT -conditional posterior distribution of the frailty pro-
cess Y, where T is the final date of our sample. This is the conditional distri-
bution of the latent factor given all of the historical default and covariate data
through the end of the sample period. For this computation, we use the Gibbs
sampler described in Appendix B. Figure 2 shows the conditional mean of the
scaled latent factor, ηYt, estimated as the average of 5,000 samples of Yt drawn
from the Gibbs sampler. One-standard deviation bands are shown around the
posterior mean. We see substantial fluctuations in the frailty effect over time.
For example, the multiplicative effect of the frailty factor on default intensities
in 2001 is roughly e1.1, or approximately three times larger than during 1995.13

While Figure 2 illustrates the posterior distribution of the frailty effect ηYt
given all information FT available at the final time T of the sample period,
most applications of a default risk model would call for the posterior distribu-
tion of ηYt given the current information Ft . For example, this is the relevant
information for measurement by a bank of the risk of a portfolio of corporate
debt. Although the covariate process is Gaussian, we also observe survivals and
defaults, so we are in a setting of filtering in non-Gaussian state space models,
to which we apply the “forward–backward algorithm” of Baum et al. (1970), as
explained in Appendix C.

Figure 3 compares the conditional density of the frailty effect ηYt for t at the
end of January 2000, conditioning on FT (in effect, the entire sample of default
times and observable covariates up to 2004), with the density of ηYt when condi-
tioning on only Ft (the data available up to and including January 2000). Given

13 A comparison that is based on replacing Y(t) in E[eηY (t) |Ft ] with the posterior mean of Y(t)
works reasonably well because the Jensen effects associated with the expectations of eηY(t) for times
in 1995 and 2001 are roughly comparable.
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Figure 2. Frailty posterior distribution. Conditional posterior mean E(ηYt |FT ) of the scaled
latent Ornstein-Uhlenbeck frailty variable, with one standard deviation bands based on the FT -
conditional variance of Yt.

the additional information available at the end of 2004, the FT -conditional dis-
tribution of ηYt is more concentrated than that obtained by conditioning on only
the concurrently available information Ft . The posterior mean of ηYt given the
information available in January 2000 is lower than that given all of the data
through 2004, reflecting the sharp rise in corporate defaults in 2001 above and
beyond that predicted from the observed covariates alone.

Figure 4 shows the path over time of the mean E(ηYt |Ft) of this posterior
density.

D. Portfolio Loss Risk

In order to illustrate the role of the common frailty effect on the tail risk
of portfolio losses, we consider the distribution of the total number of defaults
from a hypothetical portfolio consisting of all 1,813 companies in our data set
that were active as of January 1998. We computed the posterior distribution,
conditional on the information Ft available for t in January 1998, of the total
number of defaults during the subsequent 5 years, January 1998 to December
2002. Figure 5 shows the probability density of the total number of defaults
in this portfolio for three different models. All three models have the same
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Figure 3. Conditional frailty posterior, January 2000. Conditional posterior density of the
scaled frailty factor, ηYt, for t in January 2000, given FT , that is, given all data (solid line), and
given only contemporaneously available data in Ft (dashed line). These densities are calculated
using the forward–backward recursions described in Appendix C.

posterior marginal distribution for each firm’s default intensity process and
default time, but the joint distribution of default times varies across the three
models. Model (a) is the actual fitted model with a common frailty variable.
For Models (b) and (c), however, we examine the hypothetical effects of reduc-
ing the effect of frailty. For both Models (b) and (c), the default intensity λit
is changed by replacing the dependence of λit on the actual frailty process Y
with dependence on a firm-specific process Yi that has the same Ft-conditional
distribution as Y. For model (b), the initial condition Yit of Yi is common to
all firms, but the future evolution of Yi is determined not by the common OU
process Y, but rather by an OU process Yi that is independent across firms.
Thus, Model (b) captures the common source of uncertainty associated with the
current posterior distribution of Yt, but has no common future frailty shocks.
For Model (c), the hypothetical frailty processes of the firms, Y1, . . . , Ym, are
independent. That is, the initial condition Yit is drawn independently across
firms from the posterior distribution of Yt, and the future shocks to Yi are those
of an OU process Yi that is independent across firms.

One can see that the impact of the frailty effect on the portfolio loss distribu-
tion is substantially affected both by uncertainty regarding the current level Yt
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Figure 4. Filtered frailty. Conditional mean E(ηYt |Ft ) and conditional one-standard deviation
bands of the scaled frailty variable, given only contemporaneously available data (Ft ).

of common frailty in January 1998, and also by common future frailty shocks
to different firms. Both of these sources of default correlation are above and
beyond those associated with exposure of firms to observable macroeconomic
shocks, and exposure of firms to correlated observable firm-specific shocks (es-
pecially correlated changes in leverage).

In particular, we see in Figure 5 that the two hypothetical models that do not
have a common frailty variable assign virtually no probability to the event of
more than 200 defaults between January 1998 and December 2002. The 95th
and 99th percentile losses of Model (c) with completely independent frailty
variables are 144 and 150 defaults, respectively. Model (b), with independently
evolving frailty variables with the same initial value in January 1998, has
a 95th and 99th percentile of 180 and 204 defaults, respectively. The actual
number of defaults in our data set during this time period was 195.

The 95th and 99th percentile of the loss distribution of the actual estimated
model (a), with a common frailty variable, are 216 and 265 defaults, respectively.
The realized number of defaults during this event horizon, 195, is slightly be-
low the 91st percentile of the distribution implied by the fitted frailty model,
therefore constituting a relatively severe event.
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Figure 5. Conditional 5-year portfolio loss distribution in 1998. The conditional probability
density, given Ft for t in January 1998, of the total number of defaults within 5 years from the
portfolio of all active firms at January 1998, in (a) the fitted model with frailty (solid line), (b) a
hypothetical model in which the common frailty process Y is replaced with firm-by-firm frailty
processes with initial condition at time t equal to that of Yt, but with common Brownian motion
driving frailty for all firms replaced with firm-by-firm independent Brownian motions (dashed
line), and (c) a hypothetical model in which the common frailty process Y is replaced with firm-by-
firm independent frailty processes having the same posterior probability distribution as Y (dotted
line). The density estimates are obtained with a Gaussian kernel smoother (bandwidth equal to
five) applied to a Monte Carlo-generated empirical distribution.

V. Analysis of Model Fit and Specification

This section examines the ability of our model to survive tests of its fit. We
also examine its out-of-sample accuracy, and its robustness to some alternative
specifications.

A. Frailty versus No Frailty

In order to judge the relative fit of the models with and without frailty, we
do not use standard tests, such as the chi-square test. Instead, we compare
the marginal likelihoods of the models. This approach does not rely on large-
sample distribution theory and has the intuitive interpretation of attaching
prior probabilities to the competing models.
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Specifically, we consider a Bayesian approach to comparing the quality of fit
of competing models and assume positive prior probabilities for the two models
“noF” (the model without frailty) and “F” (the model with a common frailty
variable). The posterior odds ratio is

P(F | W , D)
P(noF | W , D)

= LF (γ̂F , θ̂F | W , D)
LnoF (γ̂noF , θ̂noF | W , D)

P(F)
P(noF)

, (5)

where θ̂M and LM denote the MLE and the likelihood function for a certain
model M, respectively. Plugging (3) into (5) gives

P(F | W , D)
P(noF | W , D)

= L(γ̂F | W )LF (θ̂F | W , D)
L(γ̂noF | W )LnoF (θ̂noF | W , D)

P(F)
P(noF)

= LF (θ̂F | W , D)
LnoF (θ̂noF | W , D)

P(F)
P(noF)

,

(6)

using the fact that the time-series model for the covariate process W is the
same in both models. The first factor on the right-hand side of (6) is sometimes
known as the “Bayes factor.”

Following Kass and Raftery (1995) and Eraker, Johannes, and Polson (2003),
we focus on the size of the statistic � given by twice the natural logarithm of the
Bayes factor, which is on the same scale as the likelihood ratio test statistic.
A value for � between 2 and 6 provides positive evidence, a value between
6 and 10 strong evidence, and a value larger than 10 provides very strong
evidence for the alternative model. This criterion does not necessarily favor
more complex models due to the marginal nature of the likelihood functions in
(6). Smith and Spiegelhalter (1980) discuss the penalizing nature of the Bayes
factor, sometimes referred to as the “fully automatic Occam’s razor.” In our case,
the outcome of the test statistic is 22.6. In the sense of this approach to model
comparison, we see strong evidence in favor of including a frailty variable.14

B. Misspecification of Proportional Hazards

A comparison of Figures 1 and 2 shows that the frailty effect is generally
higher when defaults are more prevalent. In light of this, one might suspect
misspecification of the proportional hazards intensity model (1), which would
automatically induce a measured frailty effect if the true intensity model has
a higher-than-proportional dependence on distance to default, which is by far
the most economically and statistically significant covariate. If the response of
the true log intensity to variation in distance to default is faster than linear,
then the estimated latent variable in our current formulation would be higher
when distances to default are well below normal, as in 1991 and 2003. In an

14 Unfortunately, the Bayes factor cannot be used for comparing the model with frailty to the
model with frailty and unobserved heterogeneity, because for the latter model evaluating the like-
lihood function is computationally prohibitively expensive.
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Internet Appendix,15 we provide an extension of the model that incorporates
non-parametric dependence of default intensities on distance to default. The
results indicate that the proportional hazards specification is unlikely to be a
significant source of misspecification in this regard. The response of the esti-
mated log intensities is roughly linear in distance to default, and the estimated
posterior of the frailty path has roughly the appearance shown in Figure 2.

C. Unobserved Heterogeneity

It may be that a substantial portion of the differences across firms’ default
risks is due to heterogeneity in the degree to which different firms are sensitive
to the covariates, perhaps through additional firm-specific omitted variables.
Failure to allow for this could result in biased and inefficient estimation. We
consider an extension of the model by introducing a firm-specific heterogeneity
factor Zi for firm i, so that the complete-information (Gt) default intensity of
firm i is of the form

λit = eβ·Wit+γ Yt Zi (7)

where Z1, . . . , Zm are independently and identically gamma-distributed16 ran-
dom variables that are jointly independent of the observable covariates W and
the common frailty process Y.

Fixing the mean of the heterogeneity factor Zi to be one without loss of gen-
erality, we find that maximum likelihood estimation does not pin down the
variance of Zi to any reasonable precision with our limited set of data. We an-
ticipate that far larger data sets would be needed, given the already large degree
of observable heterogeneity and the fact that default is, on average, relatively
unlikely. In the end, we examine the potential role of unobserved heterogene-
ity for default risk by fixing the standard deviation of Zi at 0.5. It is easy to
check that the likelihood function is again given by (3), where in this case the
final expectation is with respect to the product of the distributions of Y and
Z1, . . . , Zn.

In an Internet Appendix, we show that our general conclusions regarding
the economic significance of the covariates and the importance of including
a time-varying frailty variable remain in the presence of unobserved hetero-
geneity. Moreover, the posterior mean path of the time-varying latent factor is
essentially unchanged.

15 This Internet Appendix is available online in the “Supplements and Data Sets” section at
http://www.afajof.org/supplements.asp.

16 Pickles and Crouchery (1995) show in simulation studies that it is relatively safe to make
concrete parametric assumptions about the distribution of static frailty variables. Inference is
expected to be similar whether the frailty distribution is modeled as gamma, log normal, or some
other parametric family, but for analytical tractability we choose the gamma distribution.
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D. Parameter Uncertainty

Until this point, our analysis is based on maximum likelihood estimation
of the frailty mean reversion and volatility parameters, κ and σ . Uncertainty
regarding these parameters, in a Bayesian sense, could lead to an increase in
the tail risk of portfolio losses, which we investigate next. We are also interested
in examining our ability to learn these parameters, in a Bayesian sense. Among
other implications of our Bayesian analysis, we will see that the mean reversion
parameter κ is particularly hard to tie down.

The stationary variance of the frailty variable Yt is

σ 2
∞ ≡ lim

s→∞ var(Ys |Gt) = lim
s→∞ var(Ys | Yt) = σ 2

2κ
.

Motivated by the historical behavior of the posterior mean of the frailty, we
take the prior density of the stationary standard deviation, σ∞, to be Gamma
distributed with a mean of 0.5 and a standard deviation of 0.25. The prior
distribution for the mean reversion rate κ is also assumed to be Gamma, with
a mean of log 2/36 (which corresponds to a half-life of 3 years for shocks to the
frailty variable) and a standard deviation of log 2/72. The joint prior density of
σ and κ is therefore of the form

p (σ, κ) ∝
(

σ√
2κ

)3

exp
(

− 8σ√
2κ

)
κ3 exp

(
−κ

144
log 2

)
.

Figure 6 shows the marginal posterior densities of the volatility and mean re-
version parameters of the frailty variable. Figure 7 shows their joint posterior
density. These figures indicate considerable posterior uncertainty regarding
these parameters. From the viewpoint of subjective probability, estimates of
the tail risk of the portfolio loss distribution that are obtained by fixing these
common frailty parameters at their maximum likelihood estimates might sig-
nificantly underestimate the probability of certain extreme events.

Although parameter uncertainty has a minor influence on the portfolio loss
distribution at intermediate quantiles, Figure 8 reveals a moderate impact of
parameter uncertainty on the extreme tails of the distribution. For example,
when fixing the frailty parameters η and κ at their maximum likelihood esti-
mates, the 99th percentile of the portfolio default distribution is 265 defaults.
Taking posterior parameter uncertainty into account, this quantile rises to 275
defaults.

E. Do Trailing Defaults Proxy for Unobserved Covariates?

Table IV reports the fitted model coefficients for a model without frailty, but
with trailing 1-year average yearly default rate as a covariates. We emphasize
that this model violates the assumptions that justify our likelihood function, for
the obvious reason that defaults cannot be independent across different firms
conditional on the path of the covariate process if we include average realized
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Figure 6. Marginal frailty parameter posterior distribution. Marginal posterior densities,
given FT , of the frailty volatility parameter η and the frailty mean reversion rate κ in the Bayesian
approach of Section V.D.
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2112 The Journal of Finance R©

50 100 150 200 250 300 350 400 450

-5

-4

-3

-2

0

10

10

10

10

Number of defaults

P
ro

b
ab

il
it
y

d
en

si
ty

(l
og

sc
al

e)

Figure 8. Portfolio loss density comparison. Density, on a logarithmic scale, of the number
of defaults in the portfolio when fixing the volatility and mean reversion parameter at their MLE
estimates (dashed line), and in the Bayesian estimation framework (solid line). The density es-
timates were obtained by applying a Gaussian kernel smoother (with a bandwidth of 10) to the
Monte Carlo-generated empirical distribution.

Table IV
Maximum Likelihood Estimates of the Intensity Parameters in the

Model without Frailty but with Trailing 1-Year Average Yearly
Default Rate as a Covariate

Estimated asymptotic standard errors were computed using the Hessian matrix of the likelihood
function at θ = θ̂ .

Coefficient Std. Error t-Statistic

Constant −2.364 0.955 −2.5
Distance to default −1.189 0.052 −23.1
Trailing stock return −0.678 0.301 −2.3
3-month T-bill rate −0.086 0.135 −0.6
Trailing S&P 500 return 1.766 1.001 1.8
Trailing 1-year default rate 7.154 1.000 7.2
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default rates as a covariate. It may be, however, that trailing default rates
will proxy for an important source of default risk covariation that is otherwise
unobserved, and reduce the relative importance of frailty.

The signs, magnitudes, and statistical significance of the coefficients on the
observable covariates are similar to those of the model that does not include the
trailing default rate as a covariate. The trailing default rate plays a moderately
important auxiliary role. For example, fixing other covariates, if the trailing
average default rate were to increase by 1% per year, a large but plausible shift
given our data set, the model estimates imply a proportional increase in the
conditional mean arrival rates of all firms of about 7.1%. This would cause a
shift in the default intensity of a particular firm from, say, 2% to about 2.14%.

For the reason described above (the distribution of trailing default is an en-
dogenous property of the default intensity model), we cannot examine the in-
fluence of trailing default on the posterior of the frailty process. We are able,
though, to see whether including trailing default rates is an effective alterna-
tive to frailty in capturing the distribution of portfolio tail losses. In the sense
of the tests described in Section V.F, it is not.

F. Portfolio Default Quantile Tests

We turn to the realism with which the frailty-based model estimates the
quantiles of portfolio defaults. We will focus on the quantiles of the conditional
distributions of the total number of defaults over 1-year horizons, from the
portfolios of all active firms at the beginning of the respective years.

In terms of firm-by-firm default prediction, Duffie, Saita, and Wang (2007)
show that the observable covariates of our basic model already provide the
highest out-of-sample accuracy ratios documented in the default prediction lit-
erature. Allowing for frailty does not add significantly to firm-by-firm default
prediction. In an Internet Appendix, we show that accuracy ratios with frailty
are essentially the same as those without. Likewise, accuracy ratios are roughly
unaffected by adding the trailing average default rate as a covariate. At the level
of individual firms, most of our ability to sort firms according to default proba-
bility is coming from the firm-level covariates, particularly distance to default.
The coefficients on these variables are relatively insensitive to the alternative
specifications that we have examined.

Our main focus is the distribution of portfolio losses. In order to gauge the
ability of our model to capture this distribution, we proceed as follows. At the
beginning of each year between 1980 and 2003, we calculate for the companies
in our data set the model-implied distribution of the number of defaults during
the subsequent 12 months. We then determine the quantile of the realized
number of defaults with respect to this distribution.

Figure 9 shows these quantiles for (i) our benchmark model with frailty, (ii)
our benchmark model adjusted by removing frailty, and (iii) the model without
frailty but including the trailing 1-year average default rate as an additional co-
variate. The quantiles of the two models without frailty seem to cluster around
zero and one, which suggests that these models underestimate the probabilities
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Figure 9. Realized portfolio loss quantiles. Quantile of the realized number of defaults with
respect to the predicted 1-year portfolio loss distribution as implied by the model with the frailty
variable (crosses), without the frailty variable (circles), and without the frailty variable but with
the trailing 1-year average default rate as the covariate (triangles).

of unusually low portfolio losses and of unusually high portfolio losses. For ex-
ample, in 1994 the realized number of defaults lies below the estimated 1st
percentile of the portfolio default distribution for the model without frailty,
while in 1990 and 2001 the realized number of defaults lies above the 99.9th
percentile of the estimated distribution. For the model that also includes the
trailing 1-year average default rate as a covariate, these quantiles are only
slightly less extreme. On the other hand, the quantiles for the model with
frailty are distributed relatively evenly in the unit interval, indicating a more
accurate assessment of credit risk on the portfolio level.

Moreover, the forecasting errors for the two models without frailty tend to
be serially correlated over time, which is most evident for the periods 1994 to
1997 as well as 2000 to 2003. The null hypothesis of no serial correlation in the
quantiles is indeed rejected at the 1% significance level for the model without
frailty (p-value of 0.004). For the model without the frailty variable but with
the trailing 1-year average default rate as a covariate, the null hypothesis of
no serial correlation in the quantiles can still be rejected at the 5% significance
level (p-value of 0.019). On the other hand, with a p-value of 0.62, the null
hypothesis of no serial correlation in the quantiles cannot be rejected for the
model with frailty.
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VI. Concluding Remarks

We find substantial evidence among U.S. public corporates of a common unob-
served source of default risk, relative to the information provided by a powerful
set of observable factors for predicting individual firm defaults. According to
our estimates, failure to allow for unobserved factors in this setting leads to
dramatic downward biases in value-at-risk estimates for large corporate debt
portfolios.

Our results have important implications for the risk management of portfo-
lios of corporate debt. For example, as backing for the performance of their loan
portfolios, banks retain capital at levels designed to withstand default cluster-
ing at extremely high confidence levels, such as 99.9%. Some banks do so on
the basis of models in which default correlation is assumed to be captured by
common risk factors determining conditional default probabilities, as in Va-
sicek (1987) and Gordy (2003). If, however, defaults are more heavily clustered
in time than currently captured in these default risk models, then significantly
greater capital might be required in order to survive default losses with high
confidence levels. An understanding of the sources and degree of default cluster-
ing is also crucial for the rating and risk analysis of structured credit products
that are exposed to correlated defaults, such as CDOs and options on portfolios
of default swaps. While we do not address the pricing of credit risk in this pa-
per, frailty could play a useful role in the market valuation of relatively senior
tranches of CDOs, which suffer a loss of principal only when the total default
losses of the underlying portfolio of bonds is extreme.

We estimate our model on data for U.S. firms between January 1979 and
March 2004. We find that realized corporate default rates vary over time well
beyond levels that can be explained by a model that includes only our observ-
able covariates. In goodness-of-fit and quantile tests, the models without frailty
that we examine are rejected and significantly underestimate the probability
of extreme positive as well as negative events in portfolios of corporate credits.

For our data and model, we estimate that unobserved frailty has an impact
on default intensities that adds a proportional annual volatility of roughly 40%.
The estimated rate of mean reversion of the frailty factor is approximately 1.8%
per month, although this mean reversion rate is difficult to pin down with the
available data.

Our methodology can be applied to other situations in which a common un-
observable factor is suspected to play an important role in the time-variation of
arrivals for a given class of events, for example, operational risk events, mergers
and acquisitions, or mortgage prepayments and defaults.

Appendix A: Parameter Estimation

This appendix provides our estimation methodology. The parameter vector
γ determining the time-series model for the observable covariate process W is
specified and estimated in Duffie, Saita, and Wang (2007). This model, sum-
marized in an Internet Appendix, is vector-autoregressive Gaussian, with a
number of structural restrictions chosen for parsimony and tractability. We
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focus here on the estimation of the parameter vector θ of the default intensity
model.

We use a variant of the EM algorithm (see Demptser, Laird, and Rubin
(1977)), an iterative method for the computation of the MLE of parameters
of models involving missing or incomplete data. See also Cappé, Moulines, and
Rydén (2005), who discuss EM in the context of hidden Markov models. In
many potential applications, explicitly calculating the conditional expectation
required in the “E-step” of the algorithm may not be possible. Nevertheless,
the expectation can be approximated by Monte Carlo integration, which gives
rise to the stochastic EM algorithm, as explained, for example, by Celeux and
Diebolt (1986) and Nielsen (2000), or to the Monte Carlo EM algorithm (Wei
and Tanner (1990)).

Maximum likelihood estimation of the intensity parameter vector θ involves
the following steps:

1. Initialize an estimate of θ = (β, η, κ) at θ (0) = (β̂, 0.05, 0), where β̂ is the
maximum likelihood estimator of β in the model without frailty, which
can be obtained by maximizing the likelihood function (2) by standard
methods such as the Newton–Raphson algorithm.

2. (E-step) Given the current parameter estimate θ (k) and the observed co-
variate and default data W and D, respectively, draw n independent sam-
ple paths Y (1), . . . , Y (n) from the conditional density pY (· | W, D, θ (k)) of the
latent OU frailty process Y. We do this with the Gibbs sampler described
in Appendix B. We let

Q(θ , θ (k)) = Eθ (k) (logL(θ | W , Y , D)) (A1)

=
∫

logL(θ | W , y , D)pY ( y | W , D, θ (k)) d y , (A2)

where Eθ denotes expectation with respect to the probability measure
associated with a particular parameter vector θ . This “expected complete-
data log likelihood” or “intermediate quantity,” as it is commonly called in
the EM literature, can be approximated with the sample paths generated
by the Gibbs sampler as

Q̂(θ , θ (k)) = 1
n

n∑
j=1

logL(θ | W , Y ( j ), D). (A3)

3. (M-step) Maximize Q̂(θ , θ (k)) with respect to the parameter vector θ , for
example, by Newton–Raphson. The maximizing choice of θ is the new
parameter estimate θ (k+1).

4. Replace k with k + 1, and return to Step 2, repeating the E-step and the
M-step until reasonable numerical convergence is achieved.

One can show (Demptser, Laird, and Rubin (1977) or Gelman et al. (2004))
that L(γ , θ (k+1) | W , D) ≥ L(γ , θ (k) | W , D). That is, the observed data likelihood
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(3) is non-decreasing in each step of the EM algorithm. Under regularity con-
ditions, the parameter sequence {θ (k) : k ≥ 0} therefore converges to at least a
local maximum (see Wu (1983) for a precise formulation in terms of stationar-
ity points of the likelihood function). Nielsen (2000) gives sufficient conditions
for global convergence and asymptotic normality of the parameter estimates,
although these conditions are usually hard to verify. As with many maximiza-
tion algorithms, a simple way to mitigate the risk that one misses the global
maximum is to start the iterations at many points throughout the parameter
space.

Under regularity conditions, the Fisher and Louis identities17 imply that

∇θL(θ̂ | W , Y , D) = ∇θ Q(θ , θ̂ )|θ=θ̂

and

∇2
θ L(θ̂ | W , Y , D) = ∇2

θ Q(θ , θ̂ )|θ=θ̂ .

The Hessian matrix of the expected complete-data likelihood (A2) can there-
fore be used to estimate asymptotic standard errors for the MLE parameter
estimators.

We also estimate a generalization of the model that incorporates unobserved
heterogeneity, using an extension of this algorithm that is provided in the
Internet Appendix.

Appendix B: Applying the Gibbs Sampler with Frailty

A central quantity of interest for describing and estimating the historical
default dynamics is the posterior density pY (· | W, D, θ ) of the latent frailty
process Y. This is a complicated high-dimensional density. It is prohibitively
computationally intensive to directly generate samples from this distribution.
Nevertheless, MCMC methods can be used for exploring this posterior distribu-
tion by generating a Markov chain over Y, denoted {Y (n)}N

n≥1, whose equilibrium
density is pY (· | W, D, θ ). Samples from the joint posterior distribution can then
be used for parameter inference and for analyzing the properties of the frailty
process Y. For a function f (· ) satisfying regularity conditions, the Monte Carlo
estimate of

E[ f (Y ) | W , D, θ ] =
∫

f ( y)pY ( y | W , D, θ ) d y (B1)

is given by

1
N

N∑
n=1

f (Y (n)). (B2)

Under conditions, the ergodic theorem for Markov chains guarantees the con-
vergence of this average to its expectation as N → ∞. One such function of

17 See, for example, Proposition 10.1.6 of Cappé, Moulines, and Rydén (2005).
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interest is the identity f (y) = y, so that

E[ f (Y ) | W , D, θ ] = E[Y | W , D, θ ] = {E(Yt |FT ) : 0 ≤ t ≤ T },

the posterior mean of the latent OU frailty process.
The linchpin to MCMC is that the joint distribution of the frailty path

Y = {Yt : 0 ≤ t ≤ T} can be broken down into a set of conditional distributions.
A general version of the Clifford–Hammersley (CH) Theorem (Hammersley
and Clifford (1970) and Besag (1974)) provides conditions under which a set of
conditional distributions characterizes a unique joint distribution. For exam-
ple, in our setting, the CH Theorem indicates that the density pY (· | W, D, θ ) is
uniquely determined by the conditional distributions:

Y0 | Y1, Y2, . . . , YT , W , D, θ

Y1 | Y0, Y2, . . . , YT , W , D, θ

...

YT | Y0, Y1, . . . , YT−1, W , D, θ ,

using the naturally suggested interpretation of this informal notation. We refer
the interested reader to Robert and Casella (2005) for an extensive treatment
of Monte Carlo methods, as well as Johannes and Polson (2003) for an overview
of MCMC methods applied to problems in financial economics.

In our case, the conditional distribution of Yt at a single point in time t,
given the observable variables (W, D) and given Y(−t) = {Ys : s �= t}, is somewhat
tractable, as shown further. This allows us to use the Gibbs sampler (Geman
and Geman (1984) or Gelman et al. (2004)) to draw whole sample paths from
the posterior distribution of {Yt : 0 ≤ t ≤ T} by the following algorithm:

1. Initialize Yt = 0 for t = 0, . . . , T.
2. For t = 1, 2, . . . , T, draw a new value of Yt from its conditional distribution

given Y(−t). For a method, see later.
3. Store the sample path {Yt : 0 ≤ t ≤ T} and return to Step 2 until the desired

number of paths has been simulated.

We usually discard the first several hundred paths as a “burn-in” sample
because initially the Gibbs sampler has not approximately converged18 to the
posterior distribution of {Yt : 0 ≤ t ≤ T}.

It remains to show how to sample Yt from its conditional distribution given
Y(−t). Recall that L(θ | W , Y , D) denotes the complete-information likelihood

18 We use various convergence diagnostics, such as trace plots of a given parameter as a function
of the number of samples drawn, to assure that the iterations have proceeded long enough for
approximate convergence and to assure that our results do not depend markedly on the starting
values of the Gibbs sampler. See Gelman et al. (2004), Chapter 11.6, for a discussion of various
methods for assessing convergence of MCMC methods.
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of the observed covariates and defaults, where θ = (β, η, κ). For 0 < t < T, we
have

p(Yt | W , D, Y(−t), θ ) = p(W , D, Y , θ )
p(W , D, Y(−t), θ )

∝ p(W , D, Y , θ )

= p(W , D | Y , θ )p(Y , θ )

∝ L(θ | W , Y , D)p(Y , θ )

= L(θ | W , Y , D)p(Yt | Y(−t), θ )p(Y(−t), θ )

∝ L(θ | W , Y , D)p(Yt | Y(−t), θ ),

where we repeatedly make use of the fact that terms not involving Yt are con-
stant.

From the Markov property it follows that the conditional distribution of Yt
given Y(−t) and θ is the same as the conditional distribution of Yt given Yt−1, Yt+1,
and θ . Therefore,

p(Yt | Y(−t), θ ) = p(Yt | Yt−1, Yt+1, θ )

= p(Yt−1, Yt , Yt+1 | θ )
p(Yt−1, Yt+1 | θ )

∝ p(Yt−1, Yt , Yt+1 | θ )

= p(Yt−1, Yt | θ )p(Yt+1 | Yt−1, Yt , θ )

∝ p(Yt−1, Yt | θ )
p(Yt−1 | θ )

p(Yt+1 | Yt , θ )

= p(Yt | Yt−1, θ )p(Yt+1 | Yt , θ ),

where p(Yt | Yt−1, θ ) is the one-step transition density of the OU process (4).
Hence,

p(Yt | W , D, Y(−t), θ ) ∝ L(θ | W , Y , D) · p(Yt | Yt−1, θ ) · p(Yt+1 | Yt , θ ). (B3)

Equation (B3) determines the desired conditional density of Yt given Yt−1 and
Yt+1 in an implicit form. Although it is not possible to directly draw samples
from this distribution, we can employ the Random Walk Metropolis–Hastings
algorithm (Metropolis and Ulam (1949), and Hastings (1970)).19 We use the pro-
posal density q(Y (n)

t | W, D, Y (n−1), θ ) = N(Y (n−1)
t , 4), that is, we take the mean to

be the value of Yt from the previous iteration of the Gibbs sampler, and the
variance to be twice the variance of the standard Brownian motion

19 Alternatively, we could discretize the sample space and approximate the conditional distri-
bution by a discrete distribution, an approach commonly referred to as the Griddy Gibbs method
(Tanner (1998)). However, the Metropolis–Hastings algorithm is usually a couple of times faster
in cases in which the conditional density is not known explicitly.
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increments20. The Metropolis–Hastings step to sample Yt in the nth iteration
of the Gibbs sampler therefore works as follows:

1. Draw a candidate y ∼ N(Y (n−1)
t , 4).

2. Compute

α
(

y , Y (n)
t

) = min

(
L

(
θ | W , Y (n−1)

(−t) , Yt = y , D
)

L
(
θ | W , Y (n−1), D

) , 1

)
. (B4)

3. Draw U with the uniform distribution on (0, 1), and let

Y (n)
t =

{
y if U < α

(
y , Y (n)

t
)

Y (n−1)
t otherwise.

}
.

The choice of the acceptance probability (B4) ensures that the Markov chain
{Y (n)

t : n ≥ 1} satisfies the detailed balance equation

p( y1 | W , D, Y(−t), θ )φ y1,4( y2)α( y1, y2)

= p( y2 | W , D, Y(−t), θ )φ y2,4( y1)α( y2, y1),

where φµ,σ 2 denotes the density of a normal distribution with mean µ and
variance σ 2. Moreover, {Y (n)

t : n ≥ 1} has p(Yt | W, D, Y(−t), θ ) as its stationary
distribution (see, for example, Theorem 7.2 in Robert and Casella (2005)).

Appendix C: Forward–Backward Filtering for Frailty

Let R(t) = {i : Di,t = 0, ti ≤ t ≤ Ti} denote the set of firms that are alive at
time t, and �R(t) = {i ∈ R(t − 1) : Dit = 1, ti ≤ t ≤ Ti} be the set of firms that
defaulted at time t. A discrete-time approximation of the complete-information
likelihood of the observed survivals and defaults at time t is

Lt (θ | W , Y , D) = Lt (θ | Wt , Yt , Dt) =
∏

i∈R(t)

e−λit�t
∏

i∈�R(t)

λit�t.

The normalized version of the forward–backward algorithm allows us to calcu-
late the filtered density of the latent Ornstein–Uhlenbeck frailty variable by
the recursion

ct =
∫ ∫

p( yt−1 |Ft−1)φ( yt − yt−1)Lt(θ | Wt , yt , Dt) dyt−1 dyt

p( yt |Ft) = 1
ct

∫
p( yt−1 |Ft−1)p( yt | yt−1, θ )Lt(θ | Wt , yt , Dt) dyt−1,

20 We calculate the conditional density for various points in time numerically to assure that it
does not have any fat tails. This was indeed the case so that using a normal proposal density does
not jeopardize the convergence of the Metropolis–Hastings algorithm. See Mengersen and Tweedie
(1996) for technical conditions.
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where p(Yt | Yt−1, θ ) is the one-step transition density of the OU process (4). For
this recursion, we begin with the distribution (Dirac measure) of Y0 concen-
trated at zero.

Once the filtered density p( yt |Ft) is available, the marginal smoothed den-
sity p( yt |FT ) can be calculated using the normalized backward recursions
(Rabiner (1989)). Specifically, for t = T − 1, T − 2, . . . , 1, we apply the recur-
sion for the marginal density

ᾱt|T ( yt) = 1
ct+1

∫
p( yt | yt−1, θ )Lt+1(θ | Wt+1, yt+1, Dt+1)ᾱt+1|T ( yt+1) dyt+1

p( yt |FT ) = p( yt |Ft)ᾱt|T ( yt),

beginning with ᾱT |T ( yt) = 1.
In order to explore the joint posterior distribution p(( y0, y1, . . . , yT )′|FT ) of

the latent frailty variable, one may employ, for example, the Gibbs sampler
described in Appendix B.
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